(ITA - 2004) Considere a função $\;f : {\rm I\!R} \rightarrow \mathbb{C}$, $f(x) = 2\;cosx + 2\;i\;senx$. Então, $\;\forall \; x, y \; \in \; {\rm I\!R}\;$, o valor do produto $\;f(x)f(y)\;$ é igual a:
Calcular o valor de m que satisfaz simultaneamente as igualdades: $\,\,$$\phantom{XXXX}\operatorname{sen}x\,=\,\dfrac{m\sqrt{3}}{3}\phantom{X}$ e $\phantom{X}\operatorname{cos}x\,=\,\dfrac{\sqrt{6m}}{3}\phantom{X}$
a)
2
b)
3
c)
1
d)
-3 ou 1
e)
1 ou 3
$\phantom{X}\phantom{X}$
resposta: alternativa C Resolução: Sabemos que $\,\operatorname{sen}^{\large 2}x\,+\,\operatorname{cos}^{\large 2}x\,=\,1\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \,$. Então: $\phantom{X}\left(\dfrac{m\sqrt{3}}{3} \right)^2\,+\,\left( \dfrac{\sqrt{6m}}{3} \right)^2\,=\,1\;\Leftrightarrow\;\dfrac{3m^2}{9}\,+\,\dfrac{6m}{9}\,=\,1\phantom{X}$ $\phantom{X}\Leftrightarrow \dfrac{m^2}{3}\,+\,\dfrac{2m}{3}\,=\,1\;\Leftrightarrow \;m^2\,+2m\,-3\,=\,0\;\Rightarrow\;\left\{ \begin{array}{rcr} m\,=\,-3 \\ \mbox{ou}\phantom{XXX} \\ m\,=\,1\phantom{X} \\ \end{array}\right.\phantom{X}$ Observar que m = -3 não serve, portanto m = 1 ×
Fazer o gráfico da função $\phantom{X}f(x) = 2 \centerdot sen x\phantom{X}$ e determinar o seu período e seu conjunto Imagem.
Com relação à função $ \,f:\,{\rm\,I\!R}\,\rightarrow\,{\rm\,I\!R}\, $ definida por $ \phantom{X}f(x)\,=\,1\,+\,sen\,3x\phantom{X} $ forneça:
a) o conjunto imagem b) o período
resposta: a)
O valor do seno varia entre -1 e 1, inclusive. Então o seno de 3x também varia entre -1 e 1. $\phantom{X}\;-1\;\leqslant\;sen\;3x\;\leqslant\;1\phantom{X}\;$ Vamos somar 1 a cada membro da expressão acima: $\phantom{X}\;0\;\leqslant\;1\;+\;sen\;3x\;\leqslant\;2\phantom{X} $ $\phantom{X}\;0\;\leqslant\;f(x)\;\leqslant\;2\phantom{X} $ Como f(x) varia entre 0 e 2 (inclusive), o conjunto imagem é $\,Im\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,0\,\leqslant\,x\,\leqslant\,2\,\rbrace\,$ ou
Im = [0,2] b)
Um arco 3x executa uma volta completa no ciclo trigonométrico quando o valor de 3x varia entre 0 e 2π . $\phantom{X} 0\;\leqslant\;3x\;\leqslant\;2\pi\phantom{X}\Rightarrow$ $\phantom{X} 0\;\leqslant\;x\;\leqslant\;\dfrac{\;2\pi\;}{3}\phantom{X}$ Então um período da função inicia-se em 0 e termina em $\,\dfrac{\;2\pi\;}{3}\,$.