(PUCC) Dada a função $\,y\,=\,mx^2\,+\,2x\,+\,1\;$, se $\,m\,$ for um número inteiro maior que 1, assinale, dentre os gráficos abaixo, o que melhor a representa:
(VUNESP) Em uma partida de futebol a trajetória da bola, ao ser batida uma falta do jogo, é tal que a sua altura $\,h\,$, em metros, varia com o tempo $\,t\,$, em segundos, de acordo com a equação: $\phantom{X}h\,=\,-t^2\,+\,10t \phantom{XXX}(0\,\leqslant \,t \,\leqslant 10)$ Então a alternativa correta é:
a)
a altura máxima atingida pela bola é de 25 m.
b)
a distância do local da falta até o local onde a bola atinge o solo é de 20 m.
c)
o valor de $\,t\,$ para o qual a bola atinge a sua altaura máxima é maior do que 5 segundos.
d)
a bola, nesse intervalo de tempo, atinge 3 vezes o solo.
(SANTA CASA - 1982) As dimensões de um retângulo são numericamente iguais às coordenadas do vértice da parábola de equação $\;y\,=\,-128x^2\,+\,32x\,+\,6\;$. A área do retângulo é:
(MACKENZIE - 1982) Seja $\;ax^2\,+\,bx\,+\,c\,=\,0\;$ uma equação de coeficientes reais não nulos, com $\,a\,$ e $\,c\,$ de sinais contrários. Então, podemos afirmar que, certamente:
(FAC OBJETIVO - 1982) Seja $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$ uma função definida por $\;f(x)\,=\,{\large \sqrt{x^2\,+\,x\,+\,k}}\;$, sendo $\,k\,$ um número real. Um valor possível para $\,k\,$ é:
(SANTA CASA - 1982) A função quadrática $\,f\,$, definida por $\;f(x)\,=\,(m\,-\,1)x^2\,+\,2mx\,+\,3m\;$, assume somente valores estritamente positivos, para todo $\;x \in \mathbb{R}\;$ se, e somente se,
(MED JUNDIAÍ - 1982) Seja a função $\;f\,:\, \mathbb{R} \rightarrow \mathbb{R} \;$, definida por $\;f(x)\,=\,-x^2\,+\,ax\,+\,b\;$. Se os pontos (1 ; 3) e (0 ; 1) pertencem ao gráfico de $\,f\;$, um outro ponto do gráfico é:
(FGV - 1982) Para que a equação $\phantom{X}(a\,-\,2) \centerdot x^2 \,+\,ax\,+\,a\,-\,1\,=\,0\phantom{X}$ apresente duas raízes reais e distintas, a condição é:
a)
$\,a < 2(1\,+\,{\large \frac{\sqrt{3}}{3}})\,$
b)
$\,a > 2(1\,-\,{\large \frac{\sqrt{3}}{3}})\,$
c)
$\,a\,\neq\,2\,$
d)
$\,2(1\,-\,{\large \frac{\sqrt{3}}{3}}) < \,a\, < 2(1\,+\,{\large \frac{\sqrt{3}}{3}})\;$ e $\;a\,\neq \,2$
e)
$\,a\, < \,2(1\,-\,{\large \frac{\sqrt{3}}{3}})\,$ ou $\,a\, >\,2(1\,+\,{\large \frac{\sqrt{3}}{3}})$
(UFGO - 1982) Se possível, determine em $\,\mathbb{R}\,$ o conjunto solução da inequação $\,(x^2\,-\,2x\,-\,15)\centerdot (-x^2\,-\,2)\centerdot (1\,-\,x^2)\, \leqslant\,0$
(MACKENZIE) Em $\,\phantom{X} y\,=\,ax^2\,+\,bx\,+\,c\;,\;(a\,\neq \, 0) \phantom{X}\,$, com $\,a\,$, $\,b\;$ e $\;c\,$ reais, tem-se $\,y\,$ máximo para $\,x\,=\,2\,$. Então:
( I )
$\,{\large \frac{b}{a}}\,=\,-4\;$ e $\;a > 0\,$
( II )
$\,| {\large \frac{b}{a}} | \,=\,4\;$ e $\;a\,$ qualquer
(FAAP) Seja $\phantom{X} f\,:\,[-3\,;\,0] \rightarrow \mathbb{R}\phantom{X}$ a função tal que $\phantom{X} f(x)\,=\,(x\,+\,1)(x\,+\,3) \phantom{X}$. O conjunto imagem de $\;f\;$ é:
Determinar os valores de $\,m\,$ para que a equação do segundo grau $\phantom{X}mx^2\,+\,(2m\,-\,1)x\,+\,(m\,-\,2)\;=\;0\phantom{X}$ tenha duas raízes reais distintas.
Determinar os valores de $\,m\,$ para que a equação do segundo grau $\phantom{X}(m - 1)x^2\,+\,(2m\,+\,3)x\,+\,m\;=\;0\phantom{X}$ tenha duas raízes reais distintas.
Determinar os valores de $\,m\,$ para que a equação do segundo grau $\phantom{X}(m\,+\,2)x^2\,+\,(3\,-\,2m)x\,+\,(m\,-\,1)\;=\;0\phantom{X}$ tenha raízes reais.
resposta:
Nessa equação: $\,\left\{\begin{array}{rcr}\,a\,=\,m\,+\,2\phantom{x} &\,\\\,b\,=\,3\,-\,2m &\,\\ \,c\,=\,m\,-\,1\phantom{x} & \end{array}\,\right.\phantom{X}\Rightarrow$ $\Delta\,=\,(3\,-\,2m)^2\,-\,4\centerdot(m\,+\,2)(m\,-\,1)\,$ $\Delta\,=\,(9\,-\,12m\,+\,4m^2)\,-\,4(m^2\,-\,m\,+\,2m\,-\,2)\,=\,$ $9\,-\,12m\,+\,4m^2\,-\,4m^2\,+\,4m\,-\,8m\,+\,8\,=\,$ $-16m\,+\,17\,$ Para que a equação seja do segundo grau é necessário que $\;a = m + 2 \ne 0\;$ e para que tenha raízes reais é necessário que $\,\Delta = 17 - 16m \geqslant 0\,$ $\,\left\{\begin{array}{rcr}\,\;m \ne -2\; &\,\\ m\;\leqslant \dfrac{17}{16} & \end{array}\,\right.\phantom{X}$
Determinar os valores de $\,m\,$ para que a equação do segundo grau $\phantom{X}mx^2\,+\,(m\,+\,1)x\,+\,(m\,+\,1)\;=\;0\phantom{X}$ tenha uma raiz de multiplicidade 2.
Determinar os valores de $\,m\,$ para que a equação do segundo grau $\phantom{X}x^2\,+\,(3m\,+\,2)x\,+\,(m^2\,+\,m\,+\,2)\;=\;0\phantom{X}$ tenha duas raízes reais iguais.