Fatorar:$\phantom{X}6a^{\large 2}b\,+\,8a\phantom{X}$
✓ mostrar resposta ... resposta:
Resolução :$\,6a^{\large 2}b\,+\,8a\,=\,2a(3ab\,+\,4)\,$
$\,2a(3ab\,+\,4)\,$
× Fatorar:$\phantom{X}a^{\large 4}b^{\large 3}c^{\large 3}\,+\,a^{\large 3}b^{\large 4}c^{\large 3}\,+\,a^{\large 3}b^{\large 3}c^{\large 4}\phantom{X}$
✓ mostrar resposta ... resposta:
Resolução :$\,a^{\large 4}b^{\large 3}c^{\large 3}\,+\,a^{\large 3}b^{\large 4}c^{\large 3}\,+\,a^{\large 3}b^{\large 3}c^{\large 4}\,=$ $\,a^{\large 3}ab^{\large 3}c^{\large 3}\,+\,a^{\large 3}b^{\large 3}bc^{\large 3}\,+\,a^{\large 3}b^{\large 3}c^{\large 3}c\,=$
$\,a^{\large 3}b^{\large 3}c^{\large 3}(a\,+\,b\,+\,c)\,$
× Fatorar:$\phantom{X}x^{\large 6}\,-\,5x^{\large 5}\,+\,26x^{\large 4}\phantom{X}$
✓ mostrar resposta ... resposta:
Resolução :$\,x^{\large 6}\,-\,5x^{\large 5}\,+\,26x^{\large 4}\,=$
$\,x^{\large 4}\,\centerdot\,(x^{\large 2}\,-\,5x\,+\,26)\,$
× Fatorar:$\phantom{X}a^{\large 4}\,-\,a^{\large 3}\phantom{X}$
✓ mostrar resposta ... resposta:
Resolução :$\,a^{\large 4}\,-\,a^{\large 3}\,=$
$\,a^{\large 3}\,\centerdot\,(a\,-\,1)\,$
× A expressão $\phantom{X}\dfrac{\;2x\,-\,2y\;}{x\,-\,y}\phantom{X}$ é igual a 2 somente se:
d)
x, y ∈ $\mathbb{R}^{\large *}$
✓ mostrar resposta ... Sejam $\phantom{X}a\phantom{X}$e$\phantom{X}b\phantom{X}$ dois números reais diferentes de zero. A expressão $\phantom{X}\dfrac{1}{a^2} \,+\,\dfrac{2}{ab}\phantom{X}$é igual a:
a)
$\,\dfrac{b\,+\,2a}{a(a\,+\,b)}\,$
c)
$\,\dfrac{b\,+\,2a}{a^2b}\,$
d)
$\,\dfrac{b\,-\,2}{a(a\,+\,b)}\,$
✓ mostrar resposta ... (UNB) A expressão $\phantom{X}\dfrac{\;3a\,-\,4\;}{a^2\,-\,16}\,-\,\dfrac{1}{\;a\,-\,4\;}\phantom{X}$($\;{\small a\,\neq\,4}\;$) é equivalente a:
a)
$\,\dfrac{1}{\;a\,-\,4\;}\,$
b)
$\,\dfrac{2}{\;a\,+\,4\;}\,$
c)
$\,\dfrac{2}{\;a\,-\,4\;}\,$
d)
$\,\dfrac{\;a\,+\,4\;}{\;a\,-\,4\;}\,$
✓ mostrar resposta ...