Lista de exercícios do ensino médio para impressão
Fatorar:$\phantom{X}6a^{\large 2}b\,+\,8a\phantom{X}$

 



resposta:
Resolução:$\,6a^{\large 2}b\,+\,8a\,=\,2a(3ab\,+\,4)\,$
$\,2a(3ab\,+\,4)\,$
×
Fatorar:$\phantom{X}a^{\large 4}b^{\large 3}c^{\large 3}\,+\,a^{\large 3}b^{\large 4}c^{\large 3}\,+\,a^{\large 3}b^{\large 3}c^{\large 4}\phantom{X}$

 



resposta:
Resolução:$\,a^{\large 4}b^{\large 3}c^{\large 3}\,+\,a^{\large 3}b^{\large 4}c^{\large 3}\,+\,a^{\large 3}b^{\large 3}c^{\large 4}\,=$ $\,a^{\large 3}ab^{\large 3}c^{\large 3}\,+\,a^{\large 3}b^{\large 3}bc^{\large 3}\,+\,a^{\large 3}b^{\large 3}c^{\large 3}c\,=$
$\,a^{\large 3}b^{\large 3}c^{\large 3}(a\,+\,b\,+\,c)\,$
×
Fatorar:$\phantom{X}x^{\large 6}\,-\,5x^{\large 5}\,+\,26x^{\large 4}\phantom{X}$

 



resposta:
Resolução:$\,x^{\large 6}\,-\,5x^{\large 5}\,+\,26x^{\large 4}\,=$
$\,x^{\large 4}\,\centerdot\,(x^{\large 2}\,-\,5x\,+\,26)\,$
×
Fatorar:$\phantom{X}a^{\large 4}\,-\,a^{\large 3}\phantom{X}$

 



resposta:
Resolução:$\,a^{\large 4}\,-\,a^{\large 3}\,=$
$\,a^{\large 3}\,\centerdot\,(a\,-\,1)\,$
×
A expressão $\phantom{X}\dfrac{\;2x\,-\,2y\;}{x\,-\,y}\phantom{X}$ é igual a 2 somente se:
a)
x > 0 e y < 0
b)
x ≠ 0 e y ≠ 0
c)
x ≠ y
d)
x, y ∈ $\mathbb{R}^{\large *}$
e)
todas são falsas

 



resposta: (C)
×
Sejam $\phantom{X}a\phantom{X}$e$\phantom{X}b\phantom{X}$ dois números reais diferentes de zero. A expressão $\phantom{X}\dfrac{1}{a^2} \,+\,\dfrac{2}{ab}\phantom{X}$é igual a:
a)
$\,\dfrac{b\,+\,2a}{a(a\,+\,b)}\,$
b)
$\,\dfrac{3}{a^2b}\,$
c)
$\,\dfrac{b\,+\,2a}{a^2b}\,$
d)
$\,\dfrac{b\,-\,2}{a(a\,+\,b)}\,$
e)
nenhuma dessas

 



resposta: (C)
×
(UNB) A expressão $\phantom{X}\dfrac{\;3a\,-\,4\;}{a^2\,-\,16}\,-\,\dfrac{1}{\;a\,-\,4\;}\phantom{X}$($\;{\small a\,\neq\,4}\;$) é equivalente a:
a)
$\,\dfrac{1}{\;a\,-\,4\;}\,$
b)
$\,\dfrac{2}{\;a\,+\,4\;}\,$
c)
$\,\dfrac{2}{\;a\,-\,4\;}\,$
d)
$\,\dfrac{\;a\,+\,4\;}{\;a\,-\,4\;}\,$
e)
nenhuma dessas

 



resposta: (B)
×
Veja exercÍcio sobre:
álgebra elementar
fatoração
fator comum