(EPUSP-63) Mostre que a equação $\phantom{XXX}1000x^5\,+\,20x^2\,-\,1\,=\,0\;$ admite uma raiz positiva inferior a $\;\dfrac{1}{5}\;$.
resposta:
Temos o polinômio $\;\;P(x)\,=\,1000x^5\,+\,20x^2\,-\,1\;\;$ e vamos calcular $\;P(0)\;$ e $\;P(\frac{1}{5})\;$:$\;P(0)\,=\,1000(0)^5\,+\,20(0)^2\,-\,1\,=\,-1\,<\,0$ $\;P(\frac{1}{5})\,=\,1000{(\frac{1}{5})}^{5}\,+\,20{(\frac{1}{5})}^{2}\,-\,1\;=$ $\,1000\,+\,2500\,-\,\frac{3125}{3125}\,>\,0$. Como $\;\;P(0)\centerdot P(\frac{1}{5})\,<\,0\;\;$ , resulta que $\;P\;$ apresenta um número ímpar de raízes no intervalo $\;]0;\frac{1}{5}[\;$ (Teorema de Bolzano).
(FFCLUSP - 1966) Se dois trinômios do segundo grau $\;\;P(x)\,=\,ax^2\,+\,bx\,+\,c\;\;$ e $\;\;Q(x)\,=\,a'x^2\,+\,b'x\,+\,c'\;\;$ possuem uma e uma só raiz comum $\;\;x_0\;\;$, simples, o seu mínimo múltiplo comum é o polinômio:
(ITA - 2004) Dada a equação $\phantom{} x^3\,+\,(m\,+\,1)x^2\,+\,(m\,+\,9)x\,+\,9\,=\,0\phantom{X}$, em que $\;m\;$ é uma constante real, considere as seguintes afirmações:
I.
Se $\phantom{X} m\; \in \;\; ]-6, 6[\phantom{X}$ então existe apenas uma raiz real.
II.
Se $\phantom{X}m\,=\,-6\phantom{X}$ ou $\phantom{X}m\,=\,+6\phantom{X}$, então existe raiz com multiplicidade $\;2\;$.
III.
$\forall \;m \in \mathbb{R}\phantom{X}$, todas as raízes são reais.
Então, podemos afirmar que é (são) verdadeira(s) apenas:
(FUVEST) Sejam a , b , c as raízes de um polinômio P(x) do 3º grau, cujo coeficiente de x³ é 1 . Sabe-se que: $\,\left\{\begin{array}{rcr} a\,+\,b\,+ c =\;7\; \phantom{XX}& \\ ab\,+\,ac + bc\,=\,14\;& \\ abc\,=\,8\;\phantom{XXXXX} \; & \\ \end{array} \right.\,$ Calcular P(1)
resposta:
Resolução: se P(x) é do 3º grau, então: $\phantom{X}P(x) = x^3 + \alpha x^2 + \beta x + \gamma\phantom{X}$ Utilizando as Relações de Girard temos que:
Se três números a, b, c, dois a dois distintos, são tais que: $\,\left\{\begin{array}{rcr} a^3\;+\;p\,a\;+\;r\;=\;0\;& \\\;b^3\;+\;p\,b\;+\;r\;=\;0\;& \\ c^3\;+\;p\,c\;+\;r\;=\;0\;& \\ \end{array} \right.\,$ então o valor de a + b + c é:
a)
p
b)
r
c)
p + r
d)
1
e)
0
resposta: (E) notar que a, b e c são raízes da equação x³ + 0x² + px + r e de acordo com as relações de Girard a soma dessas raízes é igual ao simétrico do coeficiente de x² ×
Resolver a equação $\phantom{X}x^3\,-\,6x^2\,+\,11x\,-\,6\,=\,0\phantom{X}$ sabendo que uma de suas raízes é 3 .
(UFS) Se as raízes reais da equação $\phantom{X}x^3\,+\,ax^2\,+\,bx\,-\,8\,=\,0\;;\phantom{X}$ onde $\,a,\,b\,\in\,{\rm\,I\!R}\,$, são distintas e estão em progressão geométrica, então:
(CESCEM) Duas das raízes da equação $\phantom{X}x^3\;+\;2x^2\;-\;9x\;-\;18\;=\;0\phantom{X}$ são simétricas. A soma das duas maiores raízes dividida pela menor raiz é:
(CESCEM) Seja a equação $\phantom{X}2x^3 + x^2 - 18x + k = 0\phantom{X}$, com $\phantom{X}k \in {\rm I\!R}\phantom{X}$. Se a soma de duas raízes desta equação é igual a zero, o valor de k é: