(EPUSP-63) Mostre que a equação $\phantom{XXX}1000x^5\,+\,20x^2\,-\,1\,=\,0\;$ admite uma raiz positiva inferior a $\;\dfrac{1}{5}\;$.
resposta:
Temos o polinômio $\;\;P(x)\,=\,1000x^5\,+\,20x^2\,-\,1\;\;$ e vamos calcular $\;P(0)\;$ e $\;P(\frac{1}{5})\;$:$\;P(0)\,=\,1000(0)^5\,+\,20(0)^2\,-\,1\,=\,-1\,<\,0$ $\;P(\frac{1}{5})\,=\,1000{(\frac{1}{5})}^{5}\,+\,20{(\frac{1}{5})}^{2}\,-\,1\;=$ $\,1000\,+\,2500\,-\,\frac{3125}{3125}\,>\,0$. Como $\;\;P(0)\centerdot P(\frac{1}{5})\,<\,0\;\;$ , resulta que $\;P\;$ apresenta um número ímpar de raízes no intervalo $\;]0;\frac{1}{5}[\;$ (Teorema de Bolzano).
(FFCLUSP - 1966) Se dois trinômios do segundo grau $\;\;P(x)\,=\,ax^2\,+\,bx\,+\,c\;\;$ e $\;\;Q(x)\,=\,a'x^2\,+\,b'x\,+\,c'\;\;$ possuem uma e uma só raiz comum $\;\;x_0\;\;$, simples, o seu mínimo múltiplo comum é o polinômio:
(CESGRANRIO - 1985) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número de tábuas de cada espessura é:
(ITA - 2004) Seja $\;\alpha\;$ um número real, com $\;0 < \alpha < 1\;$. Assinale a alternativa que representa o conjunto de todos os valores de $\;x\;$ tais que $\; \alpha^{\large 2x}\left( \dfrac{1}{\sqrt{\alpha}} \right)^{\large 2x^2} < 1$.
(ITA - 2004) O conjunto de todos os valores de $\;\alpha\;$, $\;\alpha \; \in \; \Bigl] - \frac{\pi}{2},\;\frac{\pi}{2}\Bigr[\phantom{X}$, tais que as soluções da equação (em $x$)
(ITA - 2004) Dada a equação $\phantom{} x^3\,+\,(m\,+\,1)x^2\,+\,(m\,+\,9)x\,+\,9\,=\,0\phantom{X}$, em que $\;m\;$ é uma constante real, considere as seguintes afirmações:
I.
Se $\phantom{X} m\; \in \;\; ]-6, 6[\phantom{X}$ então existe apenas uma raiz real.
II.
Se $\phantom{X}m\,=\,-6\phantom{X}$ ou $\phantom{X}m\,=\,+6\phantom{X}$, então existe raiz com multiplicidade $\;2\;$.
III.
$\forall \;m \in \mathbb{R}\phantom{X}$, todas as raízes são reais.
Então, podemos afirmar que é (são) verdadeira(s) apenas:
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.
resposta:
Resolução:
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$. $\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3. $\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$. O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
As equações das tangentes são: $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.
resposta:
Considerações:
A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.
Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
(ITA - 1990) Considere as equações $\;{\large z^3}\,=\,i\phantom{X}\mbox{, e }\phantom{X}{\large z^2}\,+\,(2\,+\,1)z\,+\,2i\,=\,0\;$ onde $\,z\,$ é complexo. Seja $\,S_1\,$ o conjunto das raízes da primeira equação e $\,S_2\,$ o da segunda. Então:
a)
$\phantom{X}S_1\,\cap\,S_2\phantom{X}$ é vazio.
d)
$\phantom{X}S_1\,\cap\,S_2\phantom{X}$ é unitário.
(ITA - 1990) Dizemos que dois sistemas de equações lineares são equivalentes se, e somente se, toda solução de um qualquer dos sistemas for também uma solução do outro. Considere as seguintes afirmações: I. Dois sistemas de equações lineares 3x3, ambos homogêneos, são equivalentes. II. Dois sistemas de equações lineares, 3x3, ambos indeterminados, não são equivalentes. III. Os dois sistemas de equações lineares dados a seguir são equivalentes:
(ITA - 1990) Sejam as retas $\,r\,$ e $\,s\,$ dadas respectivamente pelas equações $\phantom{X}3x\,-\,4y\,+\,12\,=\,0\phantom{X}$ e $\phantom{X}3x\,-\,4y\,+\,4\,=\,0\phantom{X}$. Considere $\,{\large \ell}\,$ o lugar geométrico dos centros das circunferências que tangenciam simultaneamente $\,r\,$ e $\,s\,$. Uma equação que descreve $\,{\large \ell}\,$ é dada por:
Solução de (I) $\,x^2\,-\,3x\,>\,0\;\Rightarrow\;x(x\,-\,3)\,>\,0\;\Longleftrightarrow\;x\,<\,0\,$ ou $\,x\,>\,3\,$ O gráfico de $\;f(x)\,=\,x^2\,-\,3x\;$ é uma parábola como na figura: Temos então do gráfico que a solução de (I) é $\;S_1\,=\,\left\{\,x\,\in\,\mathbb{R}\;|\;x\,<\,0\;\mbox{ou}\;x\,>\,3\,\right\}\,$
Solução de (II) Como o gráfico $\,f(x)\,=\,x^2\,-\,x\,-\,1\,$ é uma parábola do tipo:
então: $\,x^2\,-\,x\,-1\,\geqslant\,0\;\Longleftrightarrow\;x\,\leqslant\,\dfrac{1\,-\,\sqrt{5}}{2}\;\mbox{ou}\;x\,\geqslant\,\dfrac{1\,+\,\sqrt{5}}{2}\;\,$ e temos o conjunto temporário da situação (II) $\;S_2\,=\,\left\{\,x\,\in\,\mathbb{R}\;|\;x\,\leqslant\,\dfrac{1\,-\,\sqrt{5}}{2}\;\mbox{ou}\;x\,\geqslant\,\dfrac{1\,+\,\sqrt{5}}{2}\,\right\}\;$
Solução da questão (Conjunto Verdade) A solução é o conjunto Verdade, a intersecção dos dois conjuntos $\,S_1\,$ e $\,S_2\,$ $\;V\,=\,S_1\,\cap\,S_2\,=\,\left\{\,x\,\in\,\mathbb{R}\;|\;x\,\leqslant\,\dfrac{1\,-\,\sqrt{5}}{2}\;\mbox{ou}\;x\,>\,3\,\right\}\;$ conforme o diagrama abaixo:RESPOSTA:
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{2\pi}{3}\,+\,2k\pi\;{\text ou }\,x\,=\,\frac{\pi}{3}\,+\,2k\pi \rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{\pi}{3}\,+\,2k\pi\;{\text ou }\,x\,=\,\frac{2\pi}{3}\,+\,2k\pi \rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{\pi}{2}\,+\,2k\pi \rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{3\pi}{2}\,+\,2k\pi\,\rbrace\,$ e) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\;=\;\frac{\pi}{6}\,+\,2k\pi\;{\text ou }\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi \rbrace\,$
(MAPOFEI - 1973) O ponto P = (2; 4) é o centro de um feixe de retas no plano cartesiano. Pede-se determinar as equações das retas desse feixe, perpendiculares entre si, que interceptam o eixo 0x nos pontos A e B , e tais que a distância entre eles seja 10 .
resposta: (r) 2x - y = 0 e (s) x + 27 - 10 = 0 (r) x - 2y + 6 = 0 e (s) 2x + y - 8 = 0 ×
Traçar o diagrama horário e o diagrama das velocidades dos movimentos que obedecem às seguintes equações horárias:
a)
s = 4 + 2t
b)
s = 2 - 3t
c)
s = 5 - 3t
d)
s = 4t
e)
s = -2 + 5t
f)
s = -6t
( s é expresso em metros e t é expresso em segundos )
Determinar em $\,\mathbb{R}\,$ o conjunto verdade das seguintes equações:
a)
$\,2x^2\,-\,8\,=\,0\,$
b)
$\,x^2\,-\,2x\,=\,0\,$
c)
$\,5x^2\,=\,0\,$
resposta: a) V = {2; -2} b) V = {0; 2} c) V = {0} ×
Determinar o conjunto solução $\phantom{X}\mathbb{S}\phantom{X}$ do sistema $\,\left\{\begin{array}{rcr} 2x\,+\,5y\;=\phantom{X}1\; & \\ 3x\,+\,2y\,=\,-4\;& \\ \end{array} \right.\,$
resposta:
1. resolução do sistema linear de de equações do primeiro grau pelo MÉTODO DA SUBSTITUIÇÃO:
1) Fazendo $\,\left\{\begin{array}{rcr} 2x\,+\,5y\;=\phantom{X}1\phantom{X}(I) & \\ 3x\,+\,2y\;=\,-4\;(II) & \\ \end{array} \right.\,$ 2) temos então o seguinte: de (I): $\phantom{X}2x\,+\,5y\,=\,1\;\Rightarrow\;\boxed{\;y\,=\,\dfrac{\,1\,-\,2x\,}{5}}\phantom{X}(\alpha)$ 3) substituindo $\,y\,$ em (II) 3x + 2y = -4, temos que $\,3x\,+\,2(\dfrac{\,1\,-\,2x\,}{5})\,=\,-4\;\Leftrightarrow$ $\,15x\,+\,2\,-\,4x\,=\,-20\;\Leftrightarrow$ $\;11x\,=\,-22\;\Leftrightarrow$ $\;\boxed{\;x\,=\,-2\;}\phantom{X}(\beta)$ 4) Substituindo $\,(\beta)\,$ em $\,(\alpha)\,$ temos: $\phantom{X}y\,=\,\dfrac{\;1\,-\,2\centerdot(-2)\;}{5}\;\Rightarrow\;\boxed{\;y\,=\,1\;}\phantom{X}$
(PUC - 1977) Para qual dos seguintes conjuntos de valores de m o polinômio $\phantom{X}P(x)\,=\,mx^2\,+\,2(m\,-\,2)x\,+\,m^2\phantom{X}$ é negativo quando x = 1 ?
(CESCEM - 1975) A expressão $\phantom{X}ax^2\,+\,bx\,+\,c\phantom{X}$ onde $\phantom{X}b^2\,-\,4ac\,\gt\,0\phantom{X}$ e $\phantom{X}a\,\lt\,0\phantom{X}$ é estritamente positiva se x for:
(PUC - 1982) Lâminas de zinco são mergulhadas, separadamente, em soluções de MgSO4; AgNO3 e CuSO4 . Sendo a ordem crescente de reatividade dos metais envolvidos Ag - Cu - Zn - Mg , determine:
a)
as equações químicas das reações que podem ocorrer.
b)
as variações dos números de oxidação, nessas reações.
resposta: a)$\,Zn\; + \; 2\,AgNO_{3}\; \longrightarrow \; Zn(NO_{3})_{2}\; + \; 2\,Ag^{0} \,$ $\,Zn\; + \; CuSO_{4}\; \longrightarrow \; ZnSO_{4}\; + \; Cu^{0} \,$b)na primeira equação: Zn de 0 a +2 e Ag de +1 a 0; na segunda equação: Zn de 0 a +2 e Cu de +2 a 0 ×
Utilizando alumínio e cobre como eletrodos, represente a pilha formada por estes elementos e escreva as equações químicas das reações que ocorrem na mesma.
resposta: O alumínio é mais reativo que o cobre, então seu potencial de oxidação é maior que o do cobre - o alumínio cede elétrons. Por isso: a placa de Alumínio é o eletrodo negativo, ânodo a placa de Cobre é o eletrodo positivo, cátodo Os elétrons passam pelo fio do eletrodo de Aℓ para o eletrodo de Cu de acordo com as reações: ânodo: 2Aℓo → 2Aℓ+++ + 6e- cátodo: 3Cu++ + 6e- → 3Cuo + 6e- Equação global da pilha: 2Aℓo + 3Cu++ → 2Aℓ+++ + 3Cuo ×
(BRAGANÇA) A equação do 3° grau, cujas raízes são $\;-\frac{\;1\;}{\;2\;}\,$, 1 e 2 é:
(FUVEST) Sejam a , b , c as raízes de um polinômio P(x) do 3º grau, cujo coeficiente de x³ é 1 . Sabe-se que: $\,\left\{\begin{array}{rcr} a\,+\,b\,+ c =\;7\; \phantom{XX}& \\ ab\,+\,ac + bc\,=\,14\;& \\ abc\,=\,8\;\phantom{XXXXX} \; & \\ \end{array} \right.\,$ Calcular P(1)
resposta:
Resolução: se P(x) é do 3º grau, então: $\phantom{X}P(x) = x^3 + \alpha x^2 + \beta x + \gamma\phantom{X}$ Utilizando as Relações de Girard temos que:
Se três números a, b, c, dois a dois distintos, são tais que: $\,\left\{\begin{array}{rcr} a^3\;+\;p\,a\;+\;r\;=\;0\;& \\\;b^3\;+\;p\,b\;+\;r\;=\;0\;& \\ c^3\;+\;p\,c\;+\;r\;=\;0\;& \\ \end{array} \right.\,$ então o valor de a + b + c é:
a)
p
b)
r
c)
p + r
d)
1
e)
0
resposta: (E) notar que a, b e c são raízes da equação x³ + 0x² + px + r e de acordo com as relações de Girard a soma dessas raízes é igual ao simétrico do coeficiente de x² ×
Resolver a equação $\phantom{X}x^3\,-\,6x^2\,+\,11x\,-\,6\,=\,0\phantom{X}$ sabendo que uma de suas raízes é 3 .
(UFS) Se as raízes reais da equação $\phantom{X}x^3\,+\,ax^2\,+\,bx\,-\,8\,=\,0\;;\phantom{X}$ onde $\,a,\,b\,\in\,{\rm\,I\!R}\,$, são distintas e estão em progressão geométrica, então:
(CESCEM) Duas das raízes da equação $\phantom{X}x^3\;+\;2x^2\;-\;9x\;-\;18\;=\;0\phantom{X}$ são simétricas. A soma das duas maiores raízes dividida pela menor raiz é:
(CESCEM) Seja a equação $\phantom{X}2x^3 + x^2 - 18x + k = 0\phantom{X}$, com $\phantom{X}k \in {\rm I\!R}\phantom{X}$. Se a soma de duas raízes desta equação é igual a zero, o valor de k é:
Resolvento (II) $\,\dfrac{\,180(n\,-\,2)\,}{n}\lt\,140^o\;\Longleftrightarrow$ $\;180(n\,-\,2)\,\lt\,140n\;\Longleftrightarrow$ $\;\boxed{\;n\,\lt\,9\;}\;(**)$
(*) e (**) Temos então que 7,2 < n < 9 e como n ∈ ℕ concluímos que n = 8
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}sen\,x\;=\;sen\,\dfrac{\;\pi\;}{\;5\;}\phantom{X}$
resposta:
1. x pode ser: $\,x\,=\,\dfrac{\,\pi\,}{5}\,+\,2k\pi,\,k\,\in\,\mathbb{Z}\,$ ou 2. x pode ser também: $\,x\,=\,\left(\pi\,-\,\dfrac{\,\pi\,}{5}\right)\,+\,2k\pi\,=\,$$\dfrac{\,4\pi\,}{5}\,+\,2k\pi,\,k\,\in\,\mathbb{Z}\,$
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}sen\,x\;=\;\dfrac{\;1\;}{\;2\;}\phantom{X}$
resposta:
Devemos notar que $\,\dfrac{\,1\,}{\,2\,}\,=\,sen\,\dfrac{\,\pi\,}{\,6}\,$, então a equação torna-se $\phantom{X}sen\,x\;=\;\,sen\,\dfrac{\,\pi\,}{\,6}\phantom{X}$ $\,\left\{\begin{array}{rcr} x\,= & \dfrac{\,\pi\,}{\,6\,}\,+\,2\,k\pi \phantom{XXXX} \\ ou \\ x\,= & \left(\,\pi\,-\,\dfrac{\,\pi\,}{\,6\,}\,\right)\,+\,2\,k\pi \\ \end{array} \right.\,$ $\,k\,\in\,\mathbb{Z}\,$ Donde obtemos o conjunto solução:
$\,\mathbb{S}\,=\,\lbrace\,x\,\in\,{\rm I\!R}\phantom{X}|\phantom{X}x\,=\,\dfrac{\pi}{6}\,+\,2k\pi\;$ ou $\;x\,=\,\dfrac{5\pi}{6}\,+\,2k\pi,\,k\,\in\,\mathbb{Z}\rbrace\,$ ×
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}cos\,x\;=\;-\,\dfrac{\;\sqrt{\,3\,}\;}{\;2\;}\phantom{X}$
resposta:
Devemos notar que $\,-\,\dfrac{\,\sqrt{\,3\,}\,}{\,2\,}\,=\,cos\,\dfrac{\,5\pi\,}{\,6}\,$, então a equação torna-se $\phantom{X}cos\,x\;=\;\,cos\,\dfrac{\,5\pi\,}{\,6}\phantom{X}$ $\,\left\{\begin{array}{rcr} x\,= \pm\,\dfrac{\,5\pi\,}{\,6\,}\,+\,2\,k\pi \\ \,k\,\in\,\mathbb{Z}\phantom{XXXX} \\ \end{array} \right.\,$ Donde obtemos o conjunto solução:
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}cos\,2x\;=\;0\phantom{X}$
resposta:
Devemos notar que se o cosseno de 2x é zero, então $\,2x = \pm\,\dfrac{\,\pi\,}{\,2\,}\,+\,2k\pi\;\Rightarrow$ $\;x = \pm\,\dfrac{\,\pi\,}{\,4\,}\,\,+\,k\pi,\;k\,\in\,\mathbb{Z}\,$ O conjunto solução então:
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}tg\,2x\;=\;1\phantom{X}$
resposta:
Devemos notar que se a tangente de 2x é 1, então $\,tg 2x = tg\,\dfrac{\,\pi\,}{\,4\,}\,$ Temos então: $\,2x\,=\,\dfrac{\,\pi\,}{\,4\,}\,+\,k\pi\;\Rightarrow$ $\;x = \dfrac{\,\pi\,}{\,8\,}\,\,+\,\dfrac{k\pi}{2},\;k\,\in\,\mathbb{Z}\,$ O conjunto solução então:
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{7\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,- \frac{\pi}{6}\,+\,2k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\,\pi\;$ ou $\,x\,=\,\frac{\pi}{2}\,+\,2k\pi\,\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ d)$\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{-\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{7\pi}{6}\,+\,2k\pi\,\rbrace\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{7}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{6\pi}{7}\,+\,2k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\pm \frac{\pi}{4}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{3\pi}{4}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{4}\,+\,2k\pi\,\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{3\pi}{2}\,+\,2k\pi\,\rbrace\,$ e) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{3\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ f) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{7\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,2k\pi - \frac{\pi}{6}\,\rbrace\,$ g) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ h) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\pi\;$ ou $\,x\,=\,\frac{\pi}{6}\,+\,2k\pi\;$ ou $\,x\,=\,\frac{5\pi}{6}\,+\,2k\pi\,\rbrace\,$ i) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\pi\;$ ou $\,x\,=\,\frac{\pi}{2}\,+\,2k\pi\,\rbrace\,$ ×
(FEFAAP - 1977) Determinar os valores de x que satisfazem a equação $\phantom{X}4\,sen^{\large\,4}\,x\,-\,11\,sen^{\large\,2}\,x\,+\,6\,=\,0\phantom{X}$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,\frac{\pi}{12}\,+\,k\pi\,$ ou $x\,=\,\frac{5\pi}{12}\,+\,k\pi\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,\frac{\pi}{12}\,+\,\frac{2k\pi}{3}\,$ ou $x\,=\,\frac{\pi}{4}\,+\,\frac{2k\pi}{3}\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,\frac{2\pi}{3}\,+\,2k\pi\,$ ou $x\,=\,\pi\,+\,2k\pi\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,2k\pi\,$ ou $x\,=\,\frac{\pi}{3}\,+\, \frac{2k\pi}{3}\rbrace\,$ ×
Determinar o valor de $\phantom{X}x\;,\;\,x\,\in\,{\rm I\!R}\phantom{X}$ nas seguintes igualdades:
a) $\,sen\,5x\,=\,sen\,3x\phantom{XXXXX}$ b) $\,sen\,3x\,=\,sen\,2x\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,k\pi\,$ ou $x\,=\,\frac{\pi}{8}\,+\,\frac{k\pi}{4} \rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,x\,=\,2k\pi\,$ ou $x\,=\,\frac{\pi}{5}\,+\,\frac{2k\pi}{5}\rbrace\,$ ×
Determinar os ângulos internos de um triângulo sabendo que estão em progressão aritmética e que o seno da soma do menor ângulo com o ângulo médio é $\phantom{X}\dfrac{\,\sqrt{\,3\,}\,}{\,2\,}\phantom{X}$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\pm\,\frac{\pi}{6}\,+\,2k\pi \, ou \, x\,=\,\pm\,\frac{5\pi}{6}\,+\,2k\pi\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{2}\,+\,k\pi\;ou\;x\,=\,\pi\,+\,2k\pi \, \rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{2}\,+\,k\pi\;ou\;x\,=\,\pi\,+\,2k\pi \, \rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\pi + 2k\pi \; ou \; x\,=\,\pm\,\frac{2\pi}{3}\,+\,2k\pi \rbrace\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\pm\,\frac{\pi}{12}\,+\,k\pi\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,2k\pi \; ou\; x\,=\frac{2k\pi}{3}\, \rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{3}\,+\,2k\pi\;ou\;,x\,=\,-\frac{2\pi}{3}\,+\,2k\pi \rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\;|\;\,x\,=\,\frac{\pi}{4}\,+\,2k\pi \rbrace\,$
Determinar os ângulos internos de um triângulo ABC sabendo que $\phantom{X}cos(A\,+\,B)\,=\,\dfrac{\,1\,}{\,2\,}\phantom{X}$ e $\phantom{X}sen(B\,+\,C)\,=\,\dfrac{\,1\,}{\,2\,}\phantom{X}$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{3}\,+\,k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\;ou\;x\,=\,\frac{3\pi}{4}\,+\,k\pi;\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\,\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,k\pi\;ou\;x\,=\,\frac{\pi}{4}\,+\,k\pi\;\rbrace\,$
resposta: a) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\,\rbrace\,$ b) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{2}\,+\,k\pi\;$ ou $\;x\,=\,\frac{3\pi}{4}\,+\,k\pi\rbrace\,$ c) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{\pi}{4}\,+\,k\pi\;\rbrace\,$ d) $\,S\,=\,\lbrace\,x\,\in\,{\rm I\!R}\;|\;x\,=\,\frac{3\pi}{4}\,+\,k\pi\;$ ou $\;x\,=\,k\pi\rbrace\,$