Lista de exercícios do ensino médio para impressão
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
a)
$k = {\dfrac{11}{3}}$
b)
$k = {\dfrac{15}{4}}$
c)
$k = 2$
d)
$k ={\dfrac{1}{2}}$
e)
nenhuma das respostas anteriores
circunferência no plano cartesiano

 



resposta: alternativa B
×
(ITA - 2004) A área total da superfície de um cone circular reto, cujo raio da base mede R cm , é igual à terça parte da área de um círculo de diâmetro igual ao perímetro da seção meridiana do cone. O volume deste cone, em cm³ , é igual a
a)
$\;\pi R^3$
b)
$\;\pi \sqrt{2} R^3$
c)
$\; \dfrac{\pi}{\sqrt{2}}R^3$
d)
$\;\pi \sqrt{3} R^3$
e)
$\;\dfrac{\pi}{\sqrt{3}}R^3$

 



resposta: Alternativa E
×
(ITA - 1977) Considere um triângulo retângulo inscrito em uma circunferência de raio $\,R\,$ tal que a projeção de um dos catetos sobre a hipotenusa vale $\, \dfrac{R}{m}\phantom{X} (m \geqslant 1)\,$. Considere a esfera gerada pela rotação desta circunferência em torno de um de seus diâmetros. O volume da parte desta esfera, que não pertence ao sólido gerado pela rotação do triângulo em torno da hipotenusa, é dado por:
a)
$\, \dfrac{2}{3} \pi R^{\large3} \left(\dfrac{m\,-\,1}{m}\right)^{\large 2}\phantom{XXXXXXXX}$
b)
$\, \dfrac{2}{3} \pi R^{\large3} \left(1\,-\,\left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\right)\,$
c)
$\, \dfrac{2}{3} \pi R^{\large3} \left( \dfrac{m\,+\,1}{m}\right)^{\large 2}\;\phantom{XXXXXXX}$
d)
$\,\dfrac{2}{3} \pi R^{\large3} \left(1 \,+\,\left( \dfrac{m\,-\,1}{m}\right)^{\large 2}\right)\,$
e)
nenhuma das alternativas anteriores

 



resposta: Alternativa D
×
Determinar a equação da circunferência que tem um diâmetro determinado pelos pontos A (5 , -1) e B (-3 , 7) .

 



resposta:
Resolução:
O segmento $\,\overline{AB}\,$ é um diâmetro da circunferência, então o centro da circunferência é o ponto médio de $\,\overline{AB}\,$:
$\left\{\begin{array}{rcr} A(5\, ,\,-1) \phantom{X}& \\ B(-3\,,\,7) \phantom{X}& \\ \end{array} \right. \;$ $\Rightarrow \;C\,\left( \frac{5 - 3}{2}\,;\,\frac{-1+7}{2} \right)\;\Rightarrow\;C\,(1\,;\,3)$
O raio da circunferência é obtido através da distância AC ou da distância BC.
$\,r\,=\,|AC|\,=$ $\,{\large\,\sqrt{(5\,-\,1)^2\,+\,(-1\,-\,3)^2}}\,=\,\sqrt{32}\,$
A equação da circunferência de raio $\,\sqrt{32}\,$ e centro $\,C\,(1 ; 3)\,$ é:
$\,(x\,-\,1)^2\,+\,(y\,-\,3)^2\,=\,32\;\Rightarrow$ $\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\;}\,$

×
(FUVEST - 2015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número de átomos presentes nessa grafite é
a)
$\,5\,\times\,10^{\large 23}\,$
b)
$\,1\,\times\,10^{\large 23}\,$
c)
$\,5\,\times\,10^{\large 22}\,$
d)
$\,1\,\times\,10^{\large 22}\,$
e)
$\,5\,\times\,10^{\large 21}\,$
Nota:
1)
Assuma que a grafite é um cilindro circular reto, feito de grafita pura. A espessura da grafite é o diâmetro da base do cilindro.
2)
Adote os valores aproximados de:
● 2,2 g/cm³ para a densidade da grafita;
● 12 g/mol para a massa molar do carbono;
●$\,6,0\,\times\,10^{23}mol^{\large -1}\,$ para a constante de Avogadro.

 



resposta: alternativa C
×
(FUVEST - 2018) O quadrilátero da figura está inscrito em uma circunferência de raio 1. A diagonal desenhada é um diâmetro dessa circunferência.
círculo com quadrilátero inscrito
Sendo x e y as medidas dos ângulos indicados na figura, a área da região hachurada, em função de x e y, é:

a)
$\,\pi\,+\,\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)\,$
b)
$\,\pi\,-\,\operatorname{sen}(2x)\,-\,\operatorname{sen}(2y)\,$
c)
$\,\pi\,-\,\operatorname{cos}(2x)\,-\,\operatorname{cos}(2y)\,$
d)
$\,\pi\,-\,\dfrac{\operatorname{cos}(2x)\,+\,\operatorname{cos}(2y)}{2}\,$
e)
$\,\pi\,-\,\dfrac{\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)}{2}\,$

 



resposta: Alternativa B
×
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°.
a) Qual a medida da mediana relativa à hipotenusa?
b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

 



resposta:
Resolução:
a)
triângulo retângulo inscrito na circunferência

Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$.
Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio)
b)
triângulo retângulo hipotenusa 20 cm

Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$.
Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que:
$\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$
resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e
b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°

×
Determine o raio do círculo de centro O conforme a figura,
sendo dados
AB = 3x - 3 e
OA = x + 3.
círculo de centro O e diâmetro AB

 



resposta: 12

×
Determine o valor de x nos casos:
a) $\,s\,$ é perpendicular a $\;\overline{AB}\,$
circunferência de centro O com corda AB e reta s perpendicular a AB
b) $\,\overline{PA}\,$ e $\,\overline{PB}\,$ são tangentes à circunferência
ponto P externo é intersecção de duas tangentes à circunferência de centro O

 



resposta: a) 6b) 9
×
As circunferências da figura são tangentes externamente. Se a distância entre os centros é 28 cm e a diferença entre os raios é 8 cm, determine os raios.
dois círculos de tamanhos diferentes tangentes entre si

 



resposta: 18 cm e 10 cm
×
Determine o valor de x, sendo O o centro da circunferência nos casos:
a)

circunferência de centro O duas retas concorrentes em O formando 110 graus
b)
circunferência de centro O traçados diâmetro e tangente

 



resposta: a) 125° b) 145°
×
(U.F.UBERLÂNDIA - 1981) Na figura abaixo, AB é o diâmetro de um círculo de raio 7,5 cm. Se AC =10 cm, a área do triãngulo ABC vale:
a)
$\,5\sqrt{5}\,cm^2\,$
b)
$\,75\sqrt{5}\,cm^2\,$
c)
$\,15\sqrt{5}\,cm^2\,$
d)
$\,25\sqrt{5}\,cm^2\,$
e)
$\,35\sqrt{5}\,cm^2\,$
circunferência traçado o diâmetro e uma corda com extremidade coincidente a uma extremidade do diâmetro

 



resposta: Alternativa D
×
(CESGRANRIO - 1984) AB é o diâmetro do círculo de centro O no qual o triângulo ABC está inscrito. A razão $\,\dfrac{s}{S}\,$ entre as áreas $\,s\,$ do triângulo ACO e $\,S\,$ do triângulo COB é:
a)
$\,\dfrac{5}{4}\,$
b)
$\,\dfrac{4}{3}\,$
c)
$\,\dfrac{3}{4}\,$
d)
$\,1\,$
e)
$\,\dfrac{\sqrt{3}}{2}\,$
triângulo ACB inscrito no círculo de centro O

 



resposta: Alternativa D
×
(FESP - 1991) Um triângulo equilátero ABC está inscrito numa circunferência de raio igual a 6 cm. O triângulo é interceptado por um diâmetro de circunferência, formando um trapézio, conforme a figura abaixo. Podemos afirmar então que a razão entre a área do triângulo ABC e a do trapézio é igual a:
a)
$\,\dfrac{5}{4}\,$
b)
$\,\dfrac{9}{5}\,$
c)
$\,\dfrac{9}{8}\,$
d)
$\,\dfrac{9}{4}\,$
e)
$\,\dfrac{8}{5}\,$
círculo com triângulo equilátero inscrito e diâmetro MN

 



resposta: Alternativa B
×
Calcular o volume de um cone circular reto, cujo diâmetro da base mede 24 cm e o perímetro de sua secção meridiana é 50 cm .

 



resposta:
Considerações:
O cone é circular quando a sua base é um círculo.

O cone é reto quando a projeção ortogonal do vértice sobre o plano da base é o centro da base.

A secção meridiana do cone reto é a secção feita por um plano
que passa pelo eixo do cone.
seccão meridiana do cone circular reto de eixo OV
cone circular reto de apótema g
Resolução:
Observe na figura ao lado que o perímetro da secção meridiana é: 2g + 2R
$\,2g\,+\,24\,=\,50\;\Rightarrow\;g\,=\,13\mbox{ cm} \,$
$\,\left.\begin{array}{rcr} \mbox{geratriz}\,\longrightarrow\,& g\,=\,13\mbox{ cm} \\ \mbox{T. Pitágoras}\,\rightarrow\,& g^{\large 2}\,=\,H^{\large 2}\,+\,R^{\large 2} \\ \mbox{raio da base}\,\longrightarrow\,& R\,=\,12\mbox{ cm} \\ \end{array} \right\}\;\Rightarrow$
$\,13^{\large 2}\,=\,H^{\large 2}\,+\,12^{\large 2}\;\Rightarrow$ $\,\boxed{\,H\,=\,5\mbox{ cm} \,}$
O volume de um cone é um terço da área da base do cone multiplicada pela altura do cone
$\mbox{Volume}\,=\,\dfrac{\mbox{(área da base)}\centerdot\mbox{(altura)}}{3}\,\Rightarrow\;$ $\,V\,=\,\dfrac{\pi\centerdot\,R^{\large 2}\centerdot H}{3}\,=$ $\,\dfrac{\pi\centerdot\,12^{\large 2}\centerdot 5}{3}\,$
$\;\boxed{\,V\,=\,240\pi\,cm^3\,}$
O volume do cone circular reto é 240π cm³
×
Determine o volume do prisma quadrangular regular inscrito no cilindro equilátero da figura em função do raio da base do mesmo.
prisma quadrangular inscrito em um cilindro equilátero

 



resposta:
Resolução:
base do cilindro equilátero que contém um prisma quadrangular inscrito
1. calcular a aresta da base do prisma interno:

$\;\overline{AB}\;\rightarrow\;$ lado do quadrado inscrito

$\;\overline{AC}\;\rightarrow\;$ diagonal do quadrado e diâmetro $\;2R\;$

$\;AB\sqrt{2}\,=\,2R\;\Rightarrow\;$ $\;AB\,=\,\dfrac{2R}{\sqrt{2}}\centerdot\dfrac{\sqrt{2}}{\sqrt{2}}\;\Rightarrow\;$ $\;\overline{AB}\,=\,R\sqrt{2}\;$
2. calcular a altura do prisma interno:
Dizer que o cilindro é equilátero significa que sua secção meridiana é um quadrado. Portanto a altura do cilindro é igual ao diâmetro da base (2R).A altura do prisma é a mesma do cilindro (2R).
3. calcular o volume do prisma:
Volume = (Área da Base)×(altura)
$\;V\,=\,\left( R\sqrt{2}\right)^{\large 2}\centerdot 2R\;\Rightarrow\;$
$\;V\,=\,2R^{\large 2}\centerdot 2R\;=\;4R^{\large 3}\;$
Resposta: O volume do prisma em função do raio será
V = 4R³
×
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro

 



resposta:
secção meridiana do cilindro

Considerações:

Eixo do cilindro é a reta que passa pelos centros das bases do cilindro.
Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro.
Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases.
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.

A secção meridiana de um cilindro equilátero é um quadrado.

prisma triangular regular com cilindro equilátero inscrito

Resolução:

1. Observando atentamente a figura, temos:
$\;A_{\mbox{base}}\;$
=
área da base do prisma triangular
$\;V_C\;$
=
o volume do cilindro
$\;\rightarrow\;V_C\;=\;\pi\centerdot R^{\large 2}\;=\;\pi\centerdot(3)^{\large 2}$
$\;V_P\;$
=
o volume do prisma triangular
$\;\rightarrow\;V_P\;=\,A_{\mbox{base}}\centerdot h\;=\;A_{\mbox{base}}\centerdot 6\;$
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$.
$\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.

A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita

Perímetro da base
=
$\;p\;=\,(a\,-\,s)\,+\,a\,+\,(a\,+\,s)\;=\;3\centerdot a$
Semiperímetro da base
=
$\;\dfrac{p}{2}\;=\;\dfrac{3\centerdot a}{2}$
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais:
Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
Alternativa A
×
(MED VIÇOSA) Se um resistor de cobre tem o seu comprimento e o seu diâmetro duplicados, a resistência:
a)
é multiplicada por quatro
b)
permanece a mesma
c)
é dividida por dois
d)
é multiplicada por dois
e)
é dividida por quatro

 



resposta: (C)
×
(MACKENZIE - 2002) Deseja-se alimentar a rede elétrica de uma casa localizada no sítio ilustrado a seguir. Em A tem-se o ponto de entrada do sítio, que “recebe” a energia da rede pública e, em B, o ponto de entrada da casa. Devido a irregularidades no terreno, as possibilidades de linhas de transmissão de A até B apresentadas pelo eletricista foram a 1 (linha pontilhada) e a 2 (linha cheia); porém, somente uma será instalada. Com uma mesma demanda de energia, independentemente da opção escolhida e utilizando-se fios de mesmo material, deseja-se que no ponto B chegue a mesma intensidade de corrente elétrica.
sítio onde será ligada eletricidade
Para que isso ocorra, o diâmetro do fio a ser utilizado na linha 1 deverá ser igual:
a)
ao diâmetro do fio utilizado na linha 2.
b)
a 0,6 vezes o diâmetro do fio utilizado na linha 2.
c)
a 0,72 vezes o diâmetro do fio utilizado na linha 2.
d)
a 1,2 vezes o diâmetro do fio utilizado na linha 2.
e)
a 1,44 vezes o diâmetro do fio utilizado na linha 2.

 



resposta: (D)
×
(CESGRANRIO) A luz solar incide diretamente
sobre uma cartolina que apresenta furo circular de 5 cm de diâmetro, conforme a representação na figura.
raios solares incidindo na cartolina furada
Assinale a alternativa que representa corretamente o caminho da luz solar depois de passar pelo buraco.
a)
raios difusos após o buraco
b)
raios baixos após o buraco
c)
raios cruzados após o buraco
d)
propagação retilínea dos raios luminosos
e)
raios horizontais após o buraco

 



resposta: (D)
×
(MED LONDRINA) Um anteparo opaco, onde existe um pequeno orifício, é interposto entre o Sol e uma tela. Estando o anteparo a 2,0 m da tela, obtém-se nesta última uma imagem circular nítida do Sol, de diâmetro igual a 4,0 mm . Supondo que a distância entre a Terra e o Sol é igual a 1,5 × 1011 m , o diâmetro do Sol, medido nestas condições, é igual a:
a)
1,0 × 105 km
b)
1,5 × 105 km
c)
3,0 × 105 km
d)
1,0 × 106 km
e)
1,5 × 106 km

 



resposta: (C)
×
São dadas duas lentes L1 e L2 e um feixe cilíndrico de luz.
sistema afocal para completar os raios
O ponto F representa o foco imagem de L1 e também o foco objeto de L2.
Sabendo que cada quadradinho na figura representa um quadrado real de 2,0 cm, pede-se:
a)
as distâncias focais de L1 e L2;
b)
construir o trajeto dos raios de luz e obter a relação entre os diâmetros dos feixes emergente e incidente.

 



resposta: a) FL1 = 8,0 cm e FL2 = 4,0 cm
b)$\,\dfrac{d_{\text emergente}}{d_{\text incidente}}\;=\;\dfrac{\;1\;}{2}\,$
sistema afocal

×
Dada uma esfera de raio r , calcular o volume do cilindro equilátero circunscrito.

 



resposta:
cilindro equilátero com esfera circunscrita
Resolução:
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.
Área da Base = $\,A_B = \pi\,r^2\;$
$\;h\,=\,2r\;$
$\,V\,=\,A_B\,\centerdot\,h\,=\,\pi\,r^2\,\centerdot\,2r\,=\,2\pi\,r^3\,$
Volume = 2 ℼ r³
×
Na figura seguinte:
$\,\overline{PP'}\,$ é diâmetro da esfera de centro $\,O\,$, $\;M\,$ é o centro de uma secção plana perpendicular a $\,\overline{PP'}\,$. Temos também que $\,\overline{AP}\,=\,6\,cm\;$ e $\,\overline{AP'}\,=\,8\,cm\;$. Calcular a área do círculo de centro $\,M\,$.
esfera e secção plana

 



resposta: resposta
×
Veja exercÍcio sobre:
geometria espacial
geometria de posição
superfícies
sólidos de revolução