Determinar o ponto no eixo 0x equidistante dos pontos A (6 , 5) e B (-2 , 3) .
resposta: Resolução: O ponto P equidistante de A e B está no eixo x , portanto sua ordenada é nula e podemos representar P (x , 0) . Da equidistãncia:
$\;\begin{array}{rcr} \text{distância}_{PA} = \text{distância}_{PB} \phantom{XXXXXX} & \\ \sqrt{(x\,-\,6)^2\,+\,(0\,-\,5)^2}\,=\,\sqrt{(x\,+\,2)^2\,+\,(0\,-\,3)^2}& \\ \end{array} $
Elevar os lados ao quadrado: $\,x^2\,-\,12x\,+\,36\,+\,15\,=\,x^2\,+\,4x\,+\,4\,+\,9\,$ desenvolvendo a equação temos $\,\boxed{x\,=\,3}\,$. Se x = 3 então P(x,0) é o ponto P(3;0) Resposta: $\;\boxed{\;(3\,;\,0)\;}$
Os vértices de um triângulo são: A (-3 , 6) ; B (9 , -10) e C (-5 , 4). Determinar o centro e o raio da circunferência circunscrita ao triângulo.
resposta:
Considerações:
A distância entre dois pontos no plano cartesiano é igual à raiz quadrada da soma dos quadrados da diferença entre as coordenadas respectivas dos pontos dados.
Vejamos o rascunho ao lado, onde o centro da circunferência é O (x , y) . Os segmentos $\,\overline{OA}\,$, $\,\overline{OB}\,$ e $\,\overline{OC}\,$ são raios da circunferência e têm medidas iguais a R .
(SANTA CASA) O triângulo ABC é tal que A é a origem do sistema de coordenadas, B e C estão no 1º quadrante e AB = BC . A reta s , que contém a altura do triângulo traçada por B , intercepta $\,\overline{AC}\,$ no ponto M . Sendo M (2 ; 1) e C (x ; y) , então x + y é igual a:
(OSEC) Se num sistema cartesiano ortogonal no plano, o ponto A (9 ; 4) é um dos vértices de um quadrado inscrito num círculo de centro C (6 ; 0) , então um outro vértice do quadrado poderia ter como coordenadas:
(USP) Dados os pontos A (1 ; -4) , B (1 ; 6) e C (5 ; 4 ) e sabendo-se que $\;AB^2\;=\;BC^2\,+\,AC^2\;$, então, a soma das coordenadas do centro da circunferência que passa pelos pontos A , B e C é: