b) $f(\dfrac{1}{2})\,=\,\dfrac{1}{2}\,+\,$$\dfrac{1}{\frac{1}{2}}\,=\,\dfrac{1}{2}\,+\,2\,=\,$ $\dfrac{5}{2}$
c) $f(x)\,=\,x\,+\,\dfrac{1}{x}\,=\,$ $\dfrac{x^2\,+\,1}{x}$
d) $f(\dfrac{1}{x})\,=\,\dfrac{1}{x}\,+\,\dfrac{1}{\frac{1}{x}}\,$ $=\,\dfrac{1}{x}\,+\,x\,=$ $\,\dfrac{x^2\,+\,1}{x}$
e)$f(x\,+\,1)\,=$ $\,(x\,+\,1)\,+\,\dfrac{1}{x\,+\,1}\,=\,\dfrac{(x\,+\,1)^2\,+\,1}{x\,+\,1}\,=\,$$\dfrac{x^2\,+\,2x\,+\,2}{x\,+\,1}$
f)$f(x\,+\,1)\,=$ $\,(x\,-\,1)\,+\,\dfrac{1}{x\,-\,1}\,=\,\dfrac{(x\,-\,1)^2\,+\,1}{x\,-\,1}\,=\,$$\dfrac{x^2\,-\,2x\,+\,2}{x\,-\,1}$