Lista de exercícios do ensino médio para impressão
(ITA - 1973) Seja$\;\overline{B'C'}\;$a projeção do diâmetro $\;\overline{BC}\;$ de um círculo de raio $\;r\;$ sobre a reta tangente $\;t\;$ por um ponto $\;M\;$ deste círculo. Seja $\;2k\;$ a razão da área total do tronco do cone gerado pela rotação do trapézio $\;BCB'C'\;$ ao redor da reta tangente $\;t\;$ e área do círculo dado. Qual é o valor de $\;k\;$ para que a medida do segmento $\;MB'\;$ seja igual à metade do raio $\;r\;$?
a)
$k = {\dfrac{11}{3}}$
b)
$k = {\dfrac{15}{4}}$
c)
$k = 2$
d)
$k ={\dfrac{1}{2}}$
e)
nenhuma das respostas anteriores
circunferência no plano cartesiano

 



resposta: alternativa B
×
(ITA - 1990) Na figura abaixo $\phantom{X} O\phantom{X}$ é o centro de uma circunferência. Sabendo-se que a reta que passa por $\;E\;$ e $\;F\;$ é tangente a esta circunferência e que a medida dos ângulos $\;1\;$, $\;2\;$, e $\;3\;$ é dada, respectivamente , por 49° , 18° , 34° , determinar a medida dos ângulos 4 , 5 , 6 e 7 . Nas alternativas abaixo considere os valores dados iguais às medidas de 4, 5 , 6 e 7 , respectivamente.
circunferência com ângulos
a)
97°, 78°, 61°, 26°
b)
102°, 79°, 58°, 23°
c)
92°, 79°, 61°, 30°
d)
97°, 79°, 61°, 27°
e)
97°, 80°, 62°, 29°

 



resposta: (D)
×
(F.C.M.STA.CASA - 1980) Na figura ao lado, considere o segmento a = 2 m . A área da superfície sombreada é igual a:
circunferência com área sombreada
a)
$2\pi\;$m²
b)
$4\;$m²
c)
$2\;$m²
d)
$\pi\;$m²
e)
nenhuma das anteriores

 



resposta: (D)
×
(MACKENZIE - 1978) Quatro círculos de raio unitário, cujos centros são vértices de um quadrado, são tangentes exteriormente dois a dois. A área da parte sombreada é:
a)
$2\,\sqrt{3}\,-\,\pi$
b)
$3\,\sqrt{2}\,-\,\pi$
c)
$\dfrac{\pi}{2}$
d)
$4\,-\,\pi$
e)
$5\,-\,\pi$
quatro circunferências tangentes

 



resposta: Alternativa D
×
(COVEST - 1989) Na figura abaixo, o raio da semicircunferência mede 4 cm ; o polígono é um hexágono regular, e o ângulo $\;A\hat{O}B\;$ é reto. Assinale a alternativa correta para a medida da área da região sombreada.
hexágono no interior de uma semicircunferência
a)
$(\sqrt{3}\,-\,2\pi)\;$cm²
b)
$\pi\,\sqrt{3}\;$cm²
c)
$(\pi\,-\,\sqrt{3})\;$cm²
d)
$2(4\pi\,-\,3\sqrt{3})\;$cm²
e)
$(6\pi\,-\,2\sqrt{3})\;$cm²

 



resposta: (D)
×
(ITA - 2004) A área total da superfície de um cone circular reto, cujo raio da base mede R cm , é igual à terça parte da área de um círculo de diâmetro igual ao perímetro da seção meridiana do cone. O volume deste cone, em cm³ , é igual a
a)
$\;\pi R^3$
b)
$\;\pi \sqrt{2} R^3$
c)
$\; \dfrac{\pi}{\sqrt{2}}R^3$
d)
$\;\pi \sqrt{3} R^3$
e)
$\;\dfrac{\pi}{\sqrt{3}}R^3$

 



resposta: Alternativa E
×
(ITA - 2012) As retas $\;r_1\;$ e $\;r_2\;$ são concorrentes no ponto $\;P\;$, exterior a um círculo $\;\omega\;$. A reta $\;r_1\;$ tangencia $\;\omega\;$ no ponto $\;A\;$ e a reta $\;r_2\;$ intercepta $\;\omega\;$ nos ponto $\;B\;$ e $\;C\;$ diametralmente opostos. A medida do arco $\;\stackrel \frown{AC}\;$ é $\;60^o\;$ e $\;\overline{PA}\;$ mede $\;\sqrt{2}\;$ cm. Determine a área do setor menor de $\;\omega\;$ definido pelo arco $\stackrel \frown{AB}\;$.

 



resposta:
ITA 2012 EXERCISE 32

Resolução: De acordo com a figura traçada a partir do enunciado:
1. o triângulo OAP é reto em A pois AO (o raio) é perpendicular a $r_1$ (a reta tangente).
Então
$\alpha = 180^o - 60^o - 90^o = 30^o\;$ e sabemos que a tangente de $30^o$ é $\dfrac{\sqrt{3}}{3}$.
$tg30^o = \frac{cateto\: oposto}{cateto\: adjacente} = \dfrac{OA}{AP} = \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow$
$ \dfrac{r}{\sqrt{2}} = \dfrac{\sqrt{3}}{3}\;\Longrightarrow \; r = \dfrac{\sqrt{6}}{3}\;$
2. o arco $\stackrel \frown{AOB}$, suplementar de $\stackrel \frown{AOC}$, mede $120^o$.
Então a superfície $S = \dfrac{120^o}{360^o} \centerdot \pi (r)^2 = \dfrac{\pi}{3}(\dfrac{\sqrt{6}}{3})^2 = \dfrac{2\pi}{9}\; cm^2$

Resposta:$S = \dfrac{2\pi}{9}\; cm^2$
×
(FUVEST) Em um triângulo $\,ABC\,$ o lado $\,AB\,$ mede $\,4\sqrt{2}\,$ e o ângulo $\,\hat{C}\,$, oposto ao lado $\,AB\,$, mede $\,45^o\,$. Determine o raio da circunferência que circunscreve o triângulo.

 



resposta:
Resolução:
círculo com triângulo ABC inscrito e ângulo central AOB de 90 graus
Na figura, $\,\triangle ABC\,$ onde o ângulo $\,\hat{C}\,$ mede 45° e o lado $\,\overline{AB}\,$ mede $\,4\sqrt{2}\,$ unidades. O triângulo está inscrito na circunferência de centro $\,O\,$.
Se $\,A\hat{C}B\,$ é um ângulo inscrito, então o ângulo $\,A\hat{O}B\,$ é o ângulo central correspondente e mede o dobro de $\,A\hat{C}B\,$, ou seja, mede $\,2\,\centerdot\,45^o\,=\,90^o\;$ $\,\longrightarrow \,$ o triângulo $\,A\hat{O}B\,$ é reto em $\,\hat{O}\,$
O triângulo $\,AOB\,$ é isósceles com dois lados iguais ao raio $\;r\;$ da circunferência e o terceiro lado igual a $\;4\sqrt{2}\,$.
Aplicando-se o Teorema de Pitágoras no triângulo retângulo isósceles $\,AOB\,$ temos:
$\,r^2\,+\,r^2\,=\,(4\sqrt{2})^{\large 2}\,$
$\,2\centerdot r^2\,=\,16\centerdot 2\,\Rightarrow\,r\,=\,\sqrt{16}\,$
$\,r\,=\,4\,$
Outro método: Da trigonometria, sabemos que o seno de 45° é $\,\dfrac{\sqrt{\,2\,}}{\,2\,}$ podemos utilizar o Teorema dos Senos:
$\, \dfrac{med(AB)}{sen\,45^o}\,=\,2\, \centerdot \, Raio\;\Rightarrow\;\dfrac{\;4\sqrt{\,2\,}\;}{\dfrac{\sqrt{\,2\,}}{2}} \,=\,2R\,\Rightarrow$ $\,2R\,=\,8\;\Rightarrow\;R\,=\,4\,$
medida do raio r = 4
×
(OSEC) Se num sistema cartesiano ortogonal no plano, o ponto A (9 ; 4) é um dos vértices de um quadrado inscrito num círculo de centro C (6 ; 0) , então um outro vértice do quadrado poderia ter como coordenadas:
a)
(1 ; 0)
b)
(11 ; 0)
c)
(3 ; 5)
d)
(6 ; 5)
e)
(3 ; 4)

 



resposta: alternativa E
×
(PUC) O pentágono ABCDE da figura seguinte está inscrito em um círculo de centro $\,O\,$. O ângulo $\,C\hat{O}D\,$ mede 60°. Então $\,x\,+\,y\,$ é igual a:
a)
180°
b)
185°
c)
190°
d)
210°
e)
250°
pentágono inscrito na circunferência

 



resposta: alternativa D
×
(ITA - 1990) Considere um prisma triangular regular cuja aresta da base mede x cm. Sua altura é igual ao menor lado de um triangulo ABC inscritível num círculo de raio x cm. Sabendo-se que o triangulo ABC é semelhante ao triangulo de lados 3 cm , 4 cm e 5 cm, o volume do prisma em cm³ é:
a)
$\,\dfrac{\sqrt{2}}{3}x^{\large 3}\,$
b)
$\,2\dfrac{\sqrt{2}}{5}x^{\large 3}\,$
c)
$\,3\dfrac{\sqrt{3}}{10}x^{\large 3}\,$
d)
$\,\dfrac{\sqrt{3}}{10}x^{\large 3}\,$
e)
  n.d.a

 



resposta: (C)
×
(FUVEST - 2018) O quadrilátero da figura está inscrito em uma circunferência de raio 1. A diagonal desenhada é um diâmetro dessa circunferência.
círculo com quadrilátero inscrito
Sendo x e y as medidas dos ângulos indicados na figura, a área da região hachurada, em função de x e y, é:

a)
$\,\pi\,+\,\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)\,$
b)
$\,\pi\,-\,\operatorname{sen}(2x)\,-\,\operatorname{sen}(2y)\,$
c)
$\,\pi\,-\,\operatorname{cos}(2x)\,-\,\operatorname{cos}(2y)\,$
d)
$\,\pi\,-\,\dfrac{\operatorname{cos}(2x)\,+\,\operatorname{cos}(2y)}{2}\,$
e)
$\,\pi\,-\,\dfrac{\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)}{2}\,$

 



resposta: Alternativa B
×
Determine o raio do círculo de centro O conforme a figura,
sendo dados
AB = 3x - 3 e
OA = x + 3.
círculo de centro O e diâmetro AB

 



resposta: 12

×
A circunferência C da figura tem raio de 16 cm e o ponto P dista 7 cm do centro.
Determine a distância entre P e a circunferência.
circunferência C de centro O com ponto P interno

 



resposta: 9 cm

×
Determine o valor de x nos casos:
a) $\,s\,$ é perpendicular a $\;\overline{AB}\,$
circunferência de centro O com corda AB e reta s perpendicular a AB
b) $\,\overline{PA}\,$ e $\,\overline{PB}\,$ são tangentes à circunferência
ponto P externo é intersecção de duas tangentes à circunferência de centro O

 



resposta: a) 6b) 9
×
As circunferências da figura são tangentes externamente. Se a distância entre os centros é 28 cm e a diferença entre os raios é 8 cm, determine os raios.
dois círculos de tamanhos diferentes tangentes entre si

 



resposta: 18 cm e 10 cm
×
Determine o valor de x, sendo O o centro da circunferência nos casos:
a)

circunferência de centro O duas retas concorrentes em O formando 110 graus
b)
circunferência de centro O traçados diâmetro e tangente

 



resposta: a) 125° b) 145°
×
(MACKENZIE - 1977) Se a soma das áreas dos três círculos de mesmo raio é $\,3\pi\,$, a área do triângulo equilátero ABC é:
a)
$\,7\sqrt{3}\,+\,12\,$
b)
$\,7\,+\,4\sqrt{3}\,$
c)
$\,19\sqrt{3}\,$
d)
$\,11\sqrt{3}\,$
e)
não sei
triângulo equilátero com 3 circunferências tangentes ao lado da base

 



resposta: Alternativa A
×
(U.F.UBERLÂNDIA - 1981) Na figura abaixo, AB é o diâmetro de um círculo de raio 7,5 cm. Se AC =10 cm, a área do triãngulo ABC vale:
a)
$\,5\sqrt{5}\,cm^2\,$
b)
$\,75\sqrt{5}\,cm^2\,$
c)
$\,15\sqrt{5}\,cm^2\,$
d)
$\,25\sqrt{5}\,cm^2\,$
e)
$\,35\sqrt{5}\,cm^2\,$
circunferência traçado o diâmetro e uma corda com extremidade coincidente a uma extremidade do diâmetro

 



resposta: Alternativa D
×
(U.F.VIÇOSA - 1990) Na figura abaixo, a circunferência de centro P e raio 2 é tangente a três lados do retângulo ABCD de área igual a 32. A distância do ponto P à diagonal AC vale:
a)
$\,2\dfrac{\sqrt{5}}{5}\,$
b)
$\,\dfrac{\sqrt{5}}{2}\,$
c)
$\,\dfrac{\sqrt{5}}{5}\,$
d)
$\,2\sqrt{5}\,$
e)
$\,3\dfrac{\sqrt{5}}{5}\,$
retângulo com círculo interno tangente a 3 lados

 



resposta: Alternativa A
×
(CESGRANRIO - 1984) AB é o diâmetro do círculo de centro O no qual o triângulo ABC está inscrito. A razão $\,\dfrac{s}{S}\,$ entre as áreas $\,s\,$ do triângulo ACO e $\,S\,$ do triângulo COB é:
a)
$\,\dfrac{5}{4}\,$
b)
$\,\dfrac{4}{3}\,$
c)
$\,\dfrac{3}{4}\,$
d)
$\,1\,$
e)
$\,\dfrac{\sqrt{3}}{2}\,$
triângulo ACB inscrito no círculo de centro O

 



resposta: Alternativa D
×
(FESP - 1991) Um triângulo equilátero ABC está inscrito numa circunferência de raio igual a 6 cm. O triângulo é interceptado por um diâmetro de circunferência, formando um trapézio, conforme a figura abaixo. Podemos afirmar então que a razão entre a área do triângulo ABC e a do trapézio é igual a:
a)
$\,\dfrac{5}{4}\,$
b)
$\,\dfrac{9}{5}\,$
c)
$\,\dfrac{9}{8}\,$
d)
$\,\dfrac{9}{4}\,$
e)
$\,\dfrac{8}{5}\,$
círculo com triângulo equilátero inscrito e diâmetro MN

 



resposta: Alternativa B
×
(U.C.SALVADOR - 1991) Na figura ao lado ABCD é um losango e A é o centro da circunferência de raio 4 cm. A área desse losango, em centímetros quadrados, é:
a)
$\,4\sqrt{3}\,$
b)
$\,8\,$
c)
$\,12\,$
d)
$\,8\sqrt{3}\,$
e)
$\,12\sqrt{3}\,$
círculo com centro A e losango interno com 3 vértices sobre a circunferência e um vértice no centro A do círuclo

 



resposta: Alternativa D
×
Responda as afirmações de A) até E) como CERTO ou ERRADO.
A)
Se $\,\overline{AB}\,\cong\,\overline{BD}\,$ então $\,A\,=\,D\,$.
( )
B)
Todo plano é convexo.
( )
C)
A circunferência é convexa.
( )
D)
A união de duas
regiões convexas é convexa.
( )
E)
A reta é convexa.
( )

 



resposta:
A)
(ERRADO)
Resolução:
Podemos ter:
segmentos de reta AB e BD
onde a medida $\,(\overline{AB})\,$ é igual à medida de $\,(\overline{BD})\,$ e $\,A\,$ é diferente de $\,D\,$.
B)
(CERTO)
Resolução:
Seja um plano $\,\alpha\,$:
Se $\,\left\{\begin{array}{rcr} A\,\in\,\alpha& \\ B\,\in\,\alpha& \\ \end{array} \right.\; \Rightarrow\;$ $\,\overline{AB} \;\subset\;\alpha\;\;\forall\;A,B\;\in\,\alpha\;\Rightarrow$
$\,\Rightarrow \;\alpha \mbox { é convexo}\,$
C)
(ERRADO)
Resolução:
$\,\left\{\begin{array}{rcr} A\,\in\,\mbox{ circunferência}& \\ B\,\in\,\mbox{ circunferência}& \\ \end{array} \right.\;$ $ \Rightarrow\; \mbox{ o segmento}\;\overline{AB} \;\not\subset\; \mbox{ na circunferência}$
$\,\Rightarrow \;$ circunferência não é convexa.
segmentos de reta AB com A e B pontos de uma circunferência
D)
(ERRADO)
Resolução:
Como no exemplo, S1 e S2 são círculos; S1 é convexo e S2 é convexo.Na figura, S1 ∪ S2 = S que não é convexa, pois ∃ A,B ∈ S | AB ⊄ S
círculos S1 e S2 tangentes externamente com pontos A pertence a S1 e B pertence a S2 ligados
E)
(CERTO)
$\,\forall\,A,B\,\in\,\mbox{ reta } \;\Rightarrow\,\overline{AB}\,\subset\,\mbox{reta}\,$

×
Calcular o volume de um cone circular reto, cujo diâmetro da base mede 24 cm e o perímetro de sua secção meridiana é 50 cm .

 



resposta:
Considerações:
O cone é circular quando a sua base é um círculo.

O cone é reto quando a projeção ortogonal do vértice sobre o plano da base é o centro da base.

A secção meridiana do cone reto é a secção feita por um plano
que passa pelo eixo do cone.
seccão meridiana do cone circular reto de eixo OV
cone circular reto de apótema g
Resolução:
Observe na figura ao lado que o perímetro da secção meridiana é: 2g + 2R
$\,2g\,+\,24\,=\,50\;\Rightarrow\;g\,=\,13\mbox{ cm} \,$
$\,\left.\begin{array}{rcr} \mbox{geratriz}\,\longrightarrow\,& g\,=\,13\mbox{ cm} \\ \mbox{T. Pitágoras}\,\rightarrow\,& g^{\large 2}\,=\,H^{\large 2}\,+\,R^{\large 2} \\ \mbox{raio da base}\,\longrightarrow\,& R\,=\,12\mbox{ cm} \\ \end{array} \right\}\;\Rightarrow$
$\,13^{\large 2}\,=\,H^{\large 2}\,+\,12^{\large 2}\;\Rightarrow$ $\,\boxed{\,H\,=\,5\mbox{ cm} \,}$
O volume de um cone é um terço da área da base do cone multiplicada pela altura do cone
$\mbox{Volume}\,=\,\dfrac{\mbox{(área da base)}\centerdot\mbox{(altura)}}{3}\,\Rightarrow\;$ $\,V\,=\,\dfrac{\pi\centerdot\,R^{\large 2}\centerdot H}{3}\,=$ $\,\dfrac{\pi\centerdot\,12^{\large 2}\centerdot 5}{3}\,$
$\;\boxed{\,V\,=\,240\pi\,cm^3\,}$
O volume do cone circular reto é 240π cm³
×
Sabendo que a área da base de um cone circular reto mede $\;16\pi\,cm^2\;$ e sua geratriz $\;5\,cm\;$, determine a altura do cone.

 



resposta:
cone circular reto com área da base 16 pi cm²
Sendo o cone circular, sua base é um círculo.
Podemos calcular o raio da base:
$\,\require{cancel} S_{\text base}\,=\,\pi\,r^2\,=\,16\,\pi\;\Rightarrow$ $\,r^2\,=\,\dfrac{\,16\,\cancel{\pi}\,}{\cancel{\pi}}\,$
$\,\boxed{\;r = 4\;}\,$
Considerando-se o triângulo retângulo de catetos h e r com hipotenusa 5 cm, temos:
(geratriz)² = (raio)² + (altura)²
$\,4^2\,+\,h^2\,=\,5^2\,\;\Rightarrow$ $\,h^2\,=\,25\,-\,16\;\Rightarrow$ $\,h\,=\,3\,$cm
A altura mede 3 cm
×
A área lateral de um cone de revolução é o dobro da área da base. Calcule o volume do cone, sabendo que ele é equivalente a um cilindro de 1 m de altura e que tem por base um círculo de raio igual à altura do cone.

 



resposta: V = 81π m³
×
(ITA - 1986) Um cilindro equilátero de raio 3 cm está inscrito num prisma triangular reto, cujas arestas da base estão em progressão aritmética de razão s , s > 0. Sabendo-se que a razão entre o volume do cilindro e do prisma é $\;\dfrac{\pi}{4}\;$ podemos afirmar que a área lateral do prisma vale
a)
$\;144\,cm^2\;$
b)
$\;12\,\pi\,cm^2\;$
d)
$\;\dfrac{\pi}{5}\;$ da área lateral do cilindro
c)
$\;24\,cm^2\;$
e)
$\;\dfrac{5}{3}\;$ da área lateral do cilindro

 



resposta:
secção meridiana do cilindro

Considerações:

Eixo do cilindro é a reta que passa pelos centros das bases do cilindro.
Secção meridiana de um cilindro é a secção gerada por um plano que contém o eixo do cilindro.
Um cilindro é chamado reto quando o seu eixo é perpendicular aos planos das bases.
O cilindro é EQUILÁTERO quando é reto e a medida de sua altura é igual à medida do diâmetro da base.

A secção meridiana de um cilindro equilátero é um quadrado.

prisma triangular regular com cilindro equilátero inscrito

Resolução:

1. Observando atentamente a figura, temos:
$\;A_{\mbox{base}}\;$
=
área da base do prisma triangular
$\;V_C\;$
=
o volume do cilindro
$\;\rightarrow\;V_C\;=\;\pi\centerdot R^{\large 2}\;=\;\pi\centerdot(3)^{\large 2}$
$\;V_P\;$
=
o volume do prisma triangular
$\;\rightarrow\;V_P\;=\,A_{\mbox{base}}\centerdot h\;=\;A_{\mbox{base}}\centerdot 6\;$
A razão entre o volume do cilindro e o volume do prisma é $\;\dfrac{\pi}{4}\;$.
$\;\dfrac{V_C}{V_P}\,=\,\dfrac{\pi}{4}\;\Rightarrow\;\dfrac{\pi\centerdot 3^{\large 2}\centerdot 6}{6 \centerdot A_{\mbox{base}}}\;\Leftrightarrow\;A_{\mbox{base}}\,=\,36$
A base do cilindro é um círculo inscrito na base triangular do prisma. Então o centro do círculo é o incentro da base triangular.

A área de um triângulo é igual ao seu semiperímetro multiplicado pelo raio da circunferência inscrita

Perímetro da base
=
$\;p\;=\,(a\,-\,s)\,+\,a\,+\,(a\,+\,s)\;=\;3\centerdot a$
Semiperímetro da base
=
$\;\dfrac{p}{2}\;=\;\dfrac{3\centerdot a}{2}$
$\;A_{\mbox{base}}\; =\;$ semiperímetro $\times$ R
=
$\;\dfrac{3\centerdot a \centerdot 3}{2}\; =\;36\;\Rightarrow$ $\;a\;=\;8\;$
A área lateral do prisma triangular é a soma das áreas de cada uma das três faces retangulares laterais:
Alateral = $\,6(a\,-\,s)\,+\,6(a)\,+\,6(a\,+\,s)\,$ $\,=\,6(a - s + a + a - s)\,=\,6(3a)\,=\,6\centerdot 3\centerdot 8\,= 144\;cm^2\;$
Alternativa A
×
Qual a área da superfície da esfera cuja secção meridiana tem 6 ℼ m² de área?

 



resposta:

Quando um plano α secciona uma esfera e contém o centro da mesma, a secção será denominada 'círculo máximo da esfera' (seu raio é o mesmo raio da esfera).

secção meridiana é a secção que passa pelo centro da esfera

Considerações:

O raio da secção meridiana tem medida igual à medida do raio da esfera.

Áreacírculo máximo = ℼ R² = 6 ℼ ⟺ R² = 6
Áreasuperf. esférica = 4 ℼ R² = 4 ℼ 6 = 24ℼ m²

Ssuperf. esférica = 24ℼ m²
×
A secção meridiana de uma esfera de raio R é equivalente a uma secção menor de uma segunda esfera, distante R do centro. Calcular o raio desta segunda esfera em função de R.

 



resposta:

Quando um plano α secciona uma esfera e não contém o centro da mesma, a secção determinada será um círculo cujo raio é menor do que o raio da esfera. Essa seção é denominada 'círculo menor esfera'.

esfere pequena com círculo máximo e esfera grande com círculo menor

Considerações:

No desenho, de acordo com o enunciado, a esfera maior apresenta uma secção plana que dista R do centro da esfera. O círculo menor determinado é equivalente ao círculo de raio R que encontramos na secção meridiana da esfera pequena.

Decorre do Teorema de Pitágoras:
$\,x^2\,=\,R^2\,+\,R^2\,$
$\,x\,=\,R\sqrt{\,2\,}\,$

O raio da segunda esfera é $\,R\sqrt{\,2\,}\,$
×
Determinar a medida do ângulo $\,x\,$ conforme a figura:
ângulo excêntrico interno

 



resposta:
O ângulo $\,\hat{x}\,$ é a média aritmética dos arcos.
$\,x\,=\,\dfrac{\,80\,+\,50\,}{2}\,=\,65^o\,$
Ângulos com vértice no interior do círculo:
Ângulo Excêntrico Interior
ângulo excêntrico interior
$\;\alpha\;=\;\dfrac{\stackrel \frown{AB}\,+\,\stackrel \frown{MN}}{2}\;$
 
$\;\alpha\;=\;\dfrac{\;a\,+\,b\;}{\;2\;}\;$

×
(FUVEST - 1998) 500 moedas são distribuídas entre três pessoas A, B e C, sentadas em círculo, da seguinte maneira: A recebe uma moeda, B duas, C três, A quatro, B cinco, C seis, A sete, e assim por diante, até não haver mais moedas suficientes para continuar o processo. A pessoa seguinte, então, receberá as moedas restantes.
a) Quantas foram as moedas restantes e quem as recebeu? (Deixe explícito como você obteve a resposta.)
b) Quantas moedas recebeu cada uma das três pessoas?

 



resposta: a) B recebeu as 4 moedas restantes.
b) A recebeu 176 moedas, B recebeu 159 moedas e C recebeu 165 moedas.
×
Na figura seguinte:
$\,\overline{PP'}\,$ é diâmetro da esfera de centro $\,O\,$, $\;M\,$ é o centro de uma secção plana perpendicular a $\,\overline{PP'}\,$. Temos também que $\,\overline{AP}\,=\,6\,cm\;$ e $\,\overline{AP'}\,=\,8\,cm\;$. Calcular a área do círculo de centro $\,M\,$.
esfera e secção plana

 



resposta: resposta
×
Veja exercÍcio sobre:
geometria espacial
geometria de posição
superfícies
sólidos de revolução