Lista de exercícios do ensino médio para impressão
(UCMG - 1981) O volume, em litros, de um cubo de 5 cm de aresta é de:
a)
0,0125
b)
0,1250
c)
1,2500
d)
12,500
e)
125,00

 



resposta: Alternativa B
×
(PUC-SP - 1981) Qual é o valor de x na figura ao lado?
a)
$\frac{\sqrt{3}}{3}$
b)
$\frac{5\sqrt{3}}{3}$
c)
$\frac{10\sqrt{3}}{3}$
d)
$\frac{15\sqrt{3}}{4}$
e)
$\frac{20\sqrt{3}}{3}$
triângulo retângulo com ângulos 30 graus e hipotenusa 40

 



resposta: Alternativa E
×
Determinar a diagonal de um cubo de aresta 10 cm.

 



resposta: $D = 10 \sqrt{3}$ cm.
×
Determinar a área total da superfície de um cubo de aresta 10 cm.

 



resposta: $A_{total} = 600\;cm^2$
×
Determinar o volume de um cubo de aresta 10 cm.

 



resposta: $V = a^3 = 1000\;cm^3$
×
(UnB - 1982) Na figura abaixo, é dado um cubo de $\,8\sqrt{3}$ cm de aresta, cuja base está sobre um plano $\;\pi_{1}\;$. O plano $\;\pi_{2}$ é paralelo à reta que contém a aresta $\;\;a\;\;$. Forma com $\;\pi_{1}$ um ângulo de $30^o$ e "corta" do cubo um prisma $\;C\;$ de base triangular cuja base é o triângulo $\;PQR\;$.
O segmento $\;PQ\;$ tem 5 cm de comprimento.
Determinar o volume do prisma $\;C\;$.

imagem cubo e planos concorrentes

 



resposta: V = $75\;cm^3$
×
(MAUÁ) No cubo $\;(ABCDA'B'C'D')\;$ de aresta $\;\ell\;$, calcule o volume da parte piramidal $\;(AA'BD)\;$ e a altura do vértice $\;A\;$ em relação ao plano $\;A'BD\;$.
pirâmide resultado da secção do cubo

 



resposta: $\,V = \frac{\ell^3}{6}\;$ ; $\;H = \ell \frac{\sqrt{3}}{3}\,$
×
Determine a sentença que define a função polinomial do 2º grau cuja representação gráfica é:
gráfico da função f de x do segundo grau

 



resposta: $\;f(x)\,=\,{\large\frac{3x^2}{4}} \,-\,3x\;$

×
(FUVEST - 1980) A aresta do cubo abaixo mede 2 e BP = 3. Calcule PC e PD.
cubo fuvest 1980

 



resposta: A medida de PC é $\,\sqrt{29}\,$ e a medida de PD é $\,\sqrt{33}\,$
×
(ITA - 1971) Dispomos de seis cores diferentes.
Cada face de um cubo será pintada com uma cor diferente, de forma que as seis cores sejam utilizadas. De quantas maneiras diferentes isto pode ser feito, se uma maneira é considerada idêntica a outra, desde que possa ser obtida a partir desta por rotação do cubo?
a)
30
b)
12
c)
36
d)
18
e)  nenhuma das respostas anteriores

 



resposta: Alternativa A
×
(FEI - 1982) O sólido ao lado é composto de dois cubos de arestas 2 cm e 1 cm e centros M e N .
a) Achar a distância AB.
b) Achar a distância MN.
dois cubos sobrepostos de centros M e N e arestas 1 cm e 2 cm

 



resposta: $\;\overline{AB}\,=\,\sqrt{10}\,\mbox{cm}\;$ e $\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2}\,\mbox{cm}\;$
Considerações:
Observando-se a vista lateral do sólido, como na figura, o prolongamento da aresta lateral do cubo menor que contém o ponto A define o triângulo retângulo ACB, reto em C. Nesse triângulo aplicaremos o teorema de Pitágoras.
vista lateral do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{AC}\;\mbox{ = 1 cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{BC}\;\mbox{ = 3 cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{AB})^{\large 2}\,=\,(\overline{AC})^{\large 2}\,+\,(\overline{BC})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{AB})^{\large 2}\,=\,(1)^{\large 2}\,+\,(3)^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{AB}\,=\,\sqrt{10} \mbox{ cm}\;}$
Considerações:
Para calcular a distância $\;\overline{MN}\;$ consideraremos um plano que passe pelo centro de ambos os cubos e pelas diagonais das bases de ambos os cubos, gerando no sólido a secção representada no polígono azul da figura.
secção diagonal do sólido formado por dois cubos de 1cm e 2cm de aresta
Resolução:
Consideremos o triângulo NPM reto em P.
$\,\left.\begin{array}{rcr} \mbox{cateto menor } \phantom{X}\;\,\rightarrow\, & \;\;\overline{PM}\,=\,\dfrac{\sqrt{2}}{2}\mbox{ cm }\; \\ \,\mbox{cateto maior }\phantom{XX} \rightarrow\, & \overline{NP}\,=\,\dfrac{3}{2}\mbox{ cm}\\ \mbox{teorema de Pitágoras}\, \rightarrow\, & (\overline{MN})^{\large 2}\,=\,(\overline{MP})^{\large 2}\,+\,(\overline{NP})^{\large 2}\; \\ \end{array} \right\}\;\Rightarrow\;$
$\;\Rightarrow\;(\overline{MN})^{\large 2}\,=\,(\dfrac{\sqrt{2}}{2})^{\large 2}\,+\,(\dfrac{3}{2})^{\large 2}\;\Leftrightarrow\;\boxed{\;\overline{MN}\,=\,\dfrac{\sqrt{11}}{2} \mbox{ cm}\;}$

×
Determine o volume do prisma quadrangular regular inscrito no cilindro equilátero da figura em função do raio da base do mesmo.
prisma quadrangular inscrito em um cilindro equilátero

 



resposta:
Resolução:
base do cilindro equilátero que contém um prisma quadrangular inscrito
1. calcular a aresta da base do prisma interno:

$\;\overline{AB}\;\rightarrow\;$ lado do quadrado inscrito

$\;\overline{AC}\;\rightarrow\;$ diagonal do quadrado e diâmetro $\;2R\;$

$\;AB\sqrt{2}\,=\,2R\;\Rightarrow\;$ $\;AB\,=\,\dfrac{2R}{\sqrt{2}}\centerdot\dfrac{\sqrt{2}}{\sqrt{2}}\;\Rightarrow\;$ $\;\overline{AB}\,=\,R\sqrt{2}\;$
2. calcular a altura do prisma interno:
Dizer que o cilindro é equilátero significa que sua secção meridiana é um quadrado. Portanto a altura do cilindro é igual ao diâmetro da base (2R).A altura do prisma é a mesma do cilindro (2R).
3. calcular o volume do prisma:
Volume = (Área da Base)×(altura)
$\;V\,=\,\left( R\sqrt{2}\right)^{\large 2}\centerdot 2R\;\Rightarrow\;$
$\;V\,=\,2R^{\large 2}\centerdot 2R\;=\;4R^{\large 3}\;$
Resposta: O volume do prisma em função do raio será
V = 4R³
×
Fatorar $\phantom{X}a^3\,-\,8\phantom{X}$

 



resposta: $\,a^3\,-\,8\,=\,a^3\,-\,2^3\,=$ $\,(a\,-\,2)(a^2\,+\,a\centerdot 2\,+\,2^2)\,=$ $\,(a\,-\,2)(a^2\,+\,2a\,+4)\,$
×
Fatorar: $\phantom{X}x^3\,+\,1\phantom{X}$

 



resposta: $\,x^3\,+\,1\,=\,x^3\,+\,1^3\,=$ $\,(x\,+\,1)(x^2\,-\,a\centerdot 1\,+\,1^2)\,=$ $\,(x\,+\,1)(x^2\,-\,x\,+1)\,$
×
Fatorar: $\phantom{X}x^3\,+\,2x^2\,+\,2x\,+1\phantom{X}$

 



resposta: Resolução:
$\,x^3\,+\,2x^2\,+\,2x\,+1\,=$ $\,x^3\,+\,1\,+\,2x^2\,+\,2x\,=$ $\,(x^3\,+\,1)\,+\,2x(x\,+\,1)\,=$ $\,(x\,+\,1)(x^2\,-\,x\,+\,1)\,+\,2x(x\,+\,1)\,=$ $\,(x\,+\,1)\left[\,(x^2\,-\,x\,+\,1)\,+\,2x\,\right]\,=$
$\,(x\,+\,1)(x^2\,+\,x\,+\,1)$
×
Sabendo-se que $\phantom{X}a\,+\,\dfrac{1}{a}\,=\,3\phantom{X}$, calcular o valor de $\phantom{X}a^3\,+\,\dfrac{1}{a^3}\phantom{X}$

 



resposta: Resolução:
$\,a\,+\,\dfrac{1}{a}\,=\,3\;\Rightarrow$ $\,(a\,+\,\dfrac{1}{a})^3\,=\,3^3\;\Leftrightarrow$ $\,a^3\,+\,3a\,+\,\dfrac{3}{a}\,+\,\dfrac{1}{a^3}\,=\,27\;\Leftrightarrow$ $\,a^3\,+\,\dfrac{1}{a^3}\,+\,3a\,+\,\dfrac{3}{a}\,=\,27\;\Leftrightarrow$ $\,a^3\,+\,\dfrac{1}{a^3}\,+\,3(a\,+\,\dfrac{1}{a})\,=\,27\;\Leftrightarrow$ $\,a^3\,+\,\dfrac{1}{a^3}\,+\,3\,\centerdot \,3\,=\,27\;\Leftrightarrow$
$\,a^3\,+\,\dfrac{1}{a^3}\,=\,27\,-\,9\,=\,18\,$

×
Racionalizar o denominador da fração $\phantom{X}\dfrac{1}{\sqrt[\Large 3]{5}\,+\,\sqrt[\Large 3]{2}}\phantom{X}$

 



resposta:

SOMA E DIFERENÇA DE CUBOS

$\,\boxed{\;a^3\,+\,b^3\,=\,(a\,+\,b)\,\centerdot\,(a^2\,-\,ab\,+\,b^2)\,}$
$\,\boxed{\;a^3\,-\,b^3\,=\,(a\,-\,b)\,\centerdot\,(a^2\,+\,ab\,+\,b^2)\,}$

Resolução:
Devemos multiplicar o numerador e o denominador da fração pelo fator que complete a expressão do produto notável correspondente.
$\,\dfrac{1}{\sqrt[\Large 3]{5}\,+\,\sqrt[\Large 3]{2}}\,=$ $\,\dfrac{1}{\sqrt[\Large 3]{5}\,+\,\sqrt[\Large 3]{2}}\,\centerdot\,\dfrac{(\sqrt[\Large 3]{5})^2\,-\,\sqrt[\Large 3]{5}\centerdot\sqrt[\Large 3]{2}\,+\,(\sqrt[\Large 3]{2})^2}{(\sqrt[\Large 3]{5})^2\,-\,\sqrt[\Large 3]{5}\centerdot\sqrt[\Large 3]{2}\,+\,(\sqrt[\Large 3]{2})^2}\,=$ $\,\dfrac{\sqrt[\Large 3]{5^2}\,-\,\sqrt[\Large 3]{5\,\centerdot \,2\;}\,+\,\sqrt[\Large 3]{2^2}}{(\sqrt[\Large 3]{5\;})^3\,+\,(\sqrt[\Large 3]{2\;})^3}\,=$
$\,\dfrac{\;\sqrt[\Large 3]{25\;}\,-\;\sqrt[\Large 3]{10\;}\,+\,\sqrt[\Large 3]{4\;}\,}{7}\;$

×
A grandeza n é inversamente proporcional ao cubo de m . Quando m = 4, temos n = 100. Qual o valor de n para m = 5?

 



resposta: 256/5
×
(FUVEST - 1996) Considere um circuito formado por 4 resistores iguais, interligados por fios perfeitamente condutores. Cada resistor tem resistência R e ocupa uma das arestas de um cubo, como mostra a figura a seguir. Aplicando entre os pontos A e B uma diferença de potencial V , a corrente que circulará entre A e B valerá:
a)
4V/R.
b)
2V/R.
c)
V/R
d)
V/2R
e)
V/4R.
resistores em paralelo

 



resposta: (A)
×
(FUVEST - 1998) No cubo de aresta 1, considere as arestas $\,\overline{AC}\;$ e $\;\overline{BD}\,$ e o ponto médio, $\,M\,$, de $\,\overline{AC}\;$.
a)
Determine o cosseno do ângulo $\,B\hat{A}D\,$.
b)
Determine o cosseno do ângulo $\,B\hat{M}D\,$.
c)
Qual dos ângulos $\,B\hat{A}D\,$ ou $\,B\hat{M}D\,$ é maior? Justifique.
cubo de aresta 1

 



resposta: a) $\,cosB\hat{A}D\,=\,\frac{\,\sqrt{6\,}\,}{3}\,$
b) $\,cosB\hat{M}D\,=\,\frac{\,7\,}{9}\,$
c) como a função cosseno é decrescente para ângulos agudos, se cos(BÂD) > cos(BMD) decorre que (BÂD) < (BMD)
×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 . Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
cubo com semirreta
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°

 



resposta: a)
cubo com ângulo teta para resposta
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$
b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
então:
$\;\operatorname{cos}\theta \;\lt\;0\;\Leftrightarrow$ $\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}\;\lt\;0\;$
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
gráfico da função x ao quadrado menos 1
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$
c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4.
×
Determinar a e b reais de modo que $\phantom{X}8x^3\,+\,ax^2\,+\,bx\,+27\phantom{X}$ seja um cubo perfeito.

 



resposta: a = 36; b = 54
×
(MAPOFEI - 1974) Decompor o trinômio -6x² + 36x - 56 em uma diferença de dois cubos do tipo (x - b)³ - (x - a)³ .

 



resposta: (x - 4)³ - (x - 2)³
×
Qual é a área da secção plana feita numa esfera de raio 1 cm , por um plano distante $\,\frac{\;\sqrt{\,2\,}\;}{6}\,$cm do centro da mesma?

 



resposta:
secção plana na esfera

Veja a figura onde está representado o raio da secção (r), o raio da esfera (R = 1) e a distância entre a secção e o centro da esfera ($\,\frac{\sqrt{2}}{6}\,$).

Aplicando o teorema de pitágoras:
$\,R^2\,=\,r^2\,+\,(\frac{\sqrt{\,2\,}}{6})^2\;\Longrightarrow$ $\,r^2\,=\,1\,-\,(\frac{2}{\,36\,})\;\Longrightarrow$ $\,r^2\,=\,\frac{\,34\,}{\,36\,}\;=\;\frac{\,17\,}{\,18\,}\;$

O raio da secção plana é $\,r\,=\,\sqrt{\,\frac{17}{18}\;}\,$. Como essa secção tem área circular, então:

$\,S\,=\,\pi\,r^2\,=\,\dfrac{\,17\,\pi\,}{18}\,$cm²
Ssecção plana = (17ℼ/18) cm²
×
Veja exercÍcio sobre:
geometria de posição
geometria métrica espacial
prisma
volume do cubo