Lista de exercícios do ensino médio para impressão
(CESCEM - 1970) Chamam-se cosseno hiperbólico de x e seno hiperbólico de x , e representam-se respectivamente por $\;cosh \; x\;$ e $\;senh \; x\;$ aos números:
$cosh\; x = \dfrac{e^x + e^{-x}}{2}$
$senh\; x = \dfrac{e^x - e^{-x}}{2}$
Então $\phantom{X}(cosh\,x)^2 - (senh\,x)^2\phantom{X}$ vale:
a)
$cosh \; 2x$
b)
$senh\; 2x$
c)
$\; - 1 \;$
d)
$\;1\;$
e)
nenhuma das anteriores

 



resposta: Alternativa D
×
(ITA - 2004) Considerando as funções

$\phantom{XX} \operatorname{arc\,sen:}[-1, +1] \rightarrow [ - \pi / 2, \pi / 2 ]\phantom{XX}$ e $\phantom{XXX} \operatorname{arc\,cos:} [-1, + 1] \rightarrow [0, \pi[\phantom{XX}$ ,

assinale o valor de $\phantom{X}cos(\operatorname{arc\,sen} \dfrac{3}{5} + \operatorname{arc\,cos} \dfrac{4}{5})\phantom{X}$.

a)
$\;\dfrac{6}{25}\;$
b)
$\;\dfrac{7}{25}\;$
c)
$\;\dfrac{1}{3}\;$
d)
$\;\dfrac{2}{5}\;$
e)
$\;\dfrac{5}{12}\;$

 



resposta: Alternativa B
×
(ITA - 2004) Considere a função $\;f : {\rm I\!R} \rightarrow \mathbb{C}$, $f(x) = 2\;cosx + 2\;i\;senx$. Então, $\;\forall \; x, y \; \in \; {\rm I\!R}\;$, o valor do produto $\;f(x)f(y)\;$ é igual a:
a)
$f(x + y)$
b)
$2f(x + y)$
c)
$4\;i\;f(x + y)$
d)
$f(xy)$
e)
$2f(x) + 2\;i\;f(y)$

 



resposta: (B)
×
Determinar o valor do lado $\;\overline{AC}\;$ na figura abaixo:
triângulo de lados 4 e 3 e ângulo de 60 graus entre formado por esses lados

 



resposta:

LEI DOS COSSENOS:
"Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".

Resolução:

$AC^2 = AB^2 + BC^2 - 2(AB).(BC) cos60^o$ (lei dos cossenos)
$AC^2 = 4^2 + 3^2 - 2 \centerdot 4 \centerdot 3 \centerdot \frac{1}{2}\;\;\Rightarrow$
$AC^2 = 16 + 9 - 12 = 13\; \Rightarrow \;AC = \sqrt{13}$


Resposta:
$AC = \sqrt{13}$

×
Na figura, $\;ABCD\;$ é um quadrado de lado $\;1\;cm\;$ e $\;DBE\;$ é um triângulo equilátero. Determinar a medida de $\;\overline{CE}\;$.
imagem quadrado e triângulo


 



resposta: $\;\overline{CE}\;=\;\sqrt{5\,+\,2\sqrt{3}}\;\,cm$
×
Calcular o lado $\;a\;$ de um triângulo $\;ABC\;$ sabendo-se que $\;\hat{B}\,=\,60^o\,\text{, } \hat{C}\,=\,45^o \;\text{ e }\; \overline{AB}\,=\, 2\text{ m}$.
triângulo ABC com 60 e 45 graus

 



resposta: Resolução:
$\,\triangle ADB \left\{ \operatorname{sen}60^o \,=\,{\large \frac{h}{2}}\; \Rightarrow \;h\,=\,\sqrt{3} \text{m.}\right.\,$
Então $\,BD^2 + (\sqrt{3})^2\,=\,2^2 \;\Rightarrow\;BD\,=\,1\text{m.}\,$
$\,\triangle ADC \left\{ \operatorname{tg}45^o \,=\,{\large \frac{\sqrt{3}}{CD}} \; \Rightarrow \; CD = \sqrt{3} \text{m.} \right.\,$
Logo: $\,a\,=\,BD\,+\,CD \;\Rightarrow\;$
$\boxed{\;a\,=\,(1\,+\,\sqrt{3})\text{ m.}\;}\,$
×
(FMU - FIAM) O valor de $\,\operatorname{sen}x \,+\,{\large \frac{\operatorname{sen}^3 x}{2}} \,+ \, {\large \frac{\operatorname{sen}^5 x}{4}} \,+\,...\;$ é:
a)
$\,\dfrac{\operatorname{sen}x}{1\,+\,\operatorname{sen^2}x}\,$
b)
$\,\dfrac{\operatorname{cos}x}{1\,-\,\operatorname{sen^2}x}\,$
c)
$\,\dfrac{\operatorname{sen}x}{1\,+\,\operatorname{cos^2}x}\,$
d)
$\,\dfrac{\operatorname{sen}x}{1\,-\,\operatorname{sen^2}x}\,$
e)
$\,\dfrac{2\operatorname{sen}x}{1\,+\,\operatorname{cos^2}x}\,$

 



resposta: (E)
×
(VUNESP) Se $\;x \,\text{, }\;y\;$ são números reais tais que:
$\,y\,=\, \dfrac{ \operatorname{cos^3}x \,-\, 2 \, \centerdot \,\operatorname{cos}x \,+\, \operatorname{sec}x }{ \operatorname{cos}x \, \centerdot \,\operatorname{sen^2}x } \;$, então:
a)
$\,y\,=\,\operatorname{sec^2}x\,$
b)
$\,y\,=\,\operatorname{tg^2}x\,$
c)
$\,y\,=\,\operatorname{cos^2}x\,$
d)
$\,y\,=\,\operatorname{cossec^2}x\,$
e)
$\,y\,=\,\operatorname{sen^2}x\,$

 



resposta: (B)
×
(VUNESP) Sejam $\;A\;$, $B$ e $C \;$ conjuntos de números reais. Sejam $\;f\,:\, A \rightarrow B \;$ e $\;g\,:\, B \rightarrow C \;$ definidas, respectivamente, por:
$\left\{\begin{array}{rcr} \,f(x)\, &=\,\operatorname{sen}x \text { , } \vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{ , }\,x \,\in\, \, A\,\; \phantom{XX} \\ \,g(x)\,&=\,{\Large \frac{1}{1\,-\,x^2}} - 1 \text{ , }\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{ , }\,x \,\in\, \, B \\ \end{array} \right.\,$
Se existe $\;f\,:\, A \rightarrow C \;$, definida por $\,h(x)\,=\,g{\large [f(x)]} \text{, }\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \text{, }\,x \,\in\, \, A\;$, então:
a)
$\,h(x)\,=\,\operatorname{cos}x\,$
b)
$\,h(x)\,=\,\operatorname{cos^2}x\,$
c)
$\,h(x)\,=\,\operatorname{tg^2}x\,$
d)
$\,h(x)\,=\,\operatorname{sen^2}x\,$
e)
$\,h(x)\,=\,\operatorname{sec^2}x\,$
 
 

 



resposta: (C)
×
Na figura, calcular $\,h\;$ e $\,d\,$.
triângulo retângulo 30 60 graus

 



resposta: Resolução:
$\,\triangle BCD \left\{ \operatorname{tg}60^o \,=\,{\large \frac{h}{d}} \; \Rightarrow \; h\,=\,d\sqrt{3} \right.\,$
$\,\triangle ACD \left\{ \operatorname{tg}30^o \,=\,{\large \frac{h}{d\,+\,40}} \; \Rightarrow \; h\,=\,\frac{\sqrt{3}(d\,+\,40)}{3} \right.\,$
Então $\,d\sqrt{3}\,=\,\frac{\sqrt{3}(d\,+\,40)}{3} \,\Rightarrow\; d\,=\,20\,m$
e portanto $\;h\,=\,20\sqrt{3}\,m\,$

Resposta: $\; \boxed{ d\,=\,20\,m}\;\;\boxed{h\,=\,20\sqrt{3}\,m}$
×
Sabendo-se que $\;\hat{x}\;$ é um ângulo agudo e que $\;\operatorname{tg}\hat{x}\,=\,{\large \frac{5}{12}}\;$, calcule o $\,\operatorname{sen}\hat{x}\,$

 



resposta: Resolução:
$\,\operatorname{sen^2}x \,=\,{\large \frac{\operatorname{tg^2}x}{1\,+\,\operatorname{tg^2}x}}\; \Rightarrow \operatorname{sen^2}x \,=\,{\large \frac{\frac{25}{144}}{1\,+\,\frac{25}{144}}} \,=\,\frac{25}{169}$
Então $\,\boxed{\operatorname{sen}x\,=\,\frac{5}{13}}\;\text{ (para x agudo) }$
×
Calcular $\,y\,=\,{\Large \frac{\operatorname{cos}x\,-\,\operatorname{sec}x}{\operatorname{sen}x\,-\,\operatorname{cossec}x}}\;$, sabendo que $\,\operatorname{tg}x\,=\,3\;$.

 



resposta: Resolução:
$\,y\,=\, {\large \frac{\operatorname{cos}x\,-\,\frac{1}{\operatorname{cos}x}}{\operatorname{sen}x\,-\,\frac{1}{\operatorname{sen}x } }}\,=\, {\Large \frac{ \frac{ \operatorname{cos^2}x\,-\,1}{\operatorname{cos}x}}{\frac{\operatorname{sen^2}\,-\,1}{\operatorname{sen}x}} }\,=\,$ $ {\Large \frac{ - \frac{\operatorname{sen^2}x}{\operatorname{cos}x} } {- \frac{\operatorname{cos^2}x }{\operatorname{sen}x } } } \,=\,$ $ {\Large \frac{\operatorname{sen^3}x }{\operatorname{cos^3}x} \,=\,\operatorname{tg^3}x}$
Então $\,\boxed{y\,=\,3^3\,=\,27}\,$
×
Simplificar a expressão: $\,y\,=\,{\large \frac{\operatorname{cos^3}a \,-\,\operatorname{sen^3}a}{1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a } }\;$.

 



resposta: Resolução:
$\,y\,=\,{\large \frac{(\operatorname{cos}a - \operatorname{sen}a)(\operatorname{cos^2}a\,+\,\operatorname{cos}a \;\centerdot\; \operatorname{sen}a\,+\operatorname{sen^2}a)}{(1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a)} } \,=\,$
$\,=\,{\large \frac{(\operatorname{cos}a\,-\,\operatorname{sen}a)(1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a)}{(1\,+\,\operatorname{sen}a \;\centerdot\; \operatorname{cos}a)}}\,=\,\boxed{\operatorname{cos}a\,-\,\operatorname{sen}a}$

×
(PUC) Qual é o valor de$\phantom{X}{\large x}\phantom{X}$na figura ao lado?
a)
${\large\frac{\sqrt{2}}{3}}$
b)
${\large\frac{5\sqrt{3}}{3}}$
c)
${\large\frac{10\sqrt{3}}{3}}$
d)
${\large\frac{15\sqrt{3}}{4}}$
e)
${\large\frac{20\sqrt{3}}{3}}$
triângulo com 30 e 60 graus

 



resposta: (E)
×
(FEI) Calcular $\;c\;$, sabendo que $\,a\,=\,4\,$, $\;b\,=\,3\sqrt{2\,}\,$, $\,\hat{C}\,=\,45^o\,$.
triângulo com ângulo de 45 graus

 



resposta: $\,c\,=\,\sqrt{10\,}\,$

×
(STO AMARO) Se forem indicados por $\;a \text{, } b \text{, } c \;$ os três lados de um triângulo e $\;\hat{A} \text{, } \hat{B} \text{, }\hat{C}\;$, respectivamente, os ângulos opostos a esses lados, então sendo conhecidos os lados $\;a \text{, } b\;$ e o ângulo $\,\hat{B}\,$, assinale qual das fórmulas abaixo poderá ser utilizada para calcular o lado $\,c\,$.
a) $\,a^2\,=\,b^2\,+\,c^2\,-\,2bc\,\operatorname{cos}A\,$
b) $\,b^2\,=\,a^2\,+\,c^2\,+\,2ac\,\operatorname{cos}(A\,+\,C)\,$
c) $\,c^2\,=\,a^2\,+\,b^2\,-\,2ab\,\operatorname{cos}C\,$
d) $\,c^2\,=\,a^2\,+\,b^2\,-\,2ab\,\operatorname{cos}(A\,+\,B)\,$
e) $\,b^2\,=\,a^2\,+\,c^2\,+\,2ac\,\operatorname{cos}(A\,+\,B)\,$

 



resposta: (B)
×
(ITA - 1990) Sejam os números reais $\,\alpha\,$ e $\,x\,$ onde $\,0\,<\,\alpha\,<\,{\large \tfrac{\pi}{2}}\,$. Se no desenvolvimento de $\phantom{X}\left( (cos\alpha)x\,+\,(sen\alpha)\dfrac{1}{x} \right)^8\phantom{X}$ o termo independente de $\,x\,$ vale $\,\dfrac{35}{8}\,$, então o valor de $\,\alpha\,$ é:
a)
$\,\dfrac{\pi}{6}\,$
b)
$\,\dfrac{\pi}{3}\,$
c)
$\,\dfrac{\pi}{12}\,$
d)
$\,\dfrac{\pi}{4}\,$
e)
n.d.a.

 



resposta: alternativa D
×
(ITA - 1990) Sabendo-se que $\phantom{X}\theta\phantom{X}$ é um ângulo tal que $\; 2 \operatorname{sen}(\theta\,-\,60^o)\,=\,\operatorname{cos}(\theta + 60^o) \,$ então $\,\operatorname{tg}\theta\,$ é um número da forma $\,ax\,+\,b\sqrt{3}\,$ em que:
a)
$\,a\; \mbox{ e } \;b\,$ são reais negativos.
c)
$\,a\,+\,b\,=\,1\,$.
e)
$\,a^2 \,+\, b^2\,=\,1\,$.
b)
$\,a\; \mbox{ e } \;b\,$ são inteiros.
d)
$\,a\; \mbox{ e } \;b\,$ são pares.

 



resposta: alternativa B
×
(FUVEST - 2015) Sabe-se que existem números reais $\,A\,$ e $\,x_0\,$, sendo $\,A\,>\,0\,$, tais que
$\phantom{X}\operatorname{sen}x\,+\,2\operatorname{cos}x\,=\,A\operatorname{cos}(x\,-\,x_0)\phantom{X}$
para todo $\,x\,$ real. O valor de $\,A\,$ é igual a

a)
$\,\sqrt{2}\,$
b)
$\,\sqrt{3}\,$
c)
$\,\sqrt{5}\,$
d)
$\,2\sqrt{2}\,$
e)
$\,2\sqrt{3}\,$

 



resposta: alternativa C
×
Calcular o valor de m que satisfaz simultaneamente as igualdades:
$\,\,$$\phantom{XXXX}\operatorname{sen}x\,=\,\dfrac{m\sqrt{3}}{3}\phantom{X}$ e $\phantom{X}\operatorname{cos}x\,=\,\dfrac{\sqrt{6m}}{3}\phantom{X}$
a)
2
b)
3
c)
1
d)
-3 ou 1
e)
1 ou 3
$\phantom{X}\phantom{X}$

 



resposta: alternativa C
Resolução:
Sabemos que $\,\operatorname{sen}^{\large 2}x\,+\,\operatorname{cos}^{\large 2}x\,=\,1\;\vee \negthickspace \negthickspace \negthickspace \negthinspace - x \,$. Então:
$\phantom{X}\left(\dfrac{m\sqrt{3}}{3} \right)^2\,+\,\left( \dfrac{\sqrt{6m}}{3} \right)^2\,=\,1\;\Leftrightarrow\;\dfrac{3m^2}{9}\,+\,\dfrac{6m}{9}\,=\,1\phantom{X}$
$\phantom{X}\Leftrightarrow \dfrac{m^2}{3}\,+\,\dfrac{2m}{3}\,=\,1\;\Leftrightarrow \;m^2\,+2m\,-3\,=\,0\;\Rightarrow\;\left\{ \begin{array}{rcr} m\,=\,-3 \\ \mbox{ou}\phantom{XXX} \\ m\,=\,1\phantom{X} \\ \end{array}\right.\phantom{X}$
Observar que m = -3 não serve, portanto m = 1
×
(ITA - 1982) Num triangulo isóceles, o perímetro mede 64 m e os ângulos adjacentes são $\,arc\,cos\dfrac{7}{25}\;$. Então a área do triangulo é de:
a) 168 m²b) 192 m²c) 84 m²d) 96 m²e) 157 m²
168 m²192 m²84 m²96 m²157 m²

 



resposta: (A)
×
(FUVEST - 2018) O quadrilátero da figura está inscrito em uma circunferência de raio 1. A diagonal desenhada é um diâmetro dessa circunferência.
círculo com quadrilátero inscrito
Sendo x e y as medidas dos ângulos indicados na figura, a área da região hachurada, em função de x e y, é:

a)
$\,\pi\,+\,\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)\,$
b)
$\,\pi\,-\,\operatorname{sen}(2x)\,-\,\operatorname{sen}(2y)\,$
c)
$\,\pi\,-\,\operatorname{cos}(2x)\,-\,\operatorname{cos}(2y)\,$
d)
$\,\pi\,-\,\dfrac{\operatorname{cos}(2x)\,+\,\operatorname{cos}(2y)}{2}\,$
e)
$\,\pi\,-\,\dfrac{\operatorname{sen}(2x)\,+\,\operatorname{sen}(2y)}{2}\,$

 



resposta: Alternativa B
×
Para que valores de $\,m\,$ é possível a igualdade $\,\operatorname{cos}x\,=\,1 + 3m\,$?

 



resposta:
$\,-\dfrac{2}{3}\,\leqslant\,m\,\leqslant\,0\,$
Resolução:
O valor de um cosseno está sempre entre -1 e 1 inclusive.
$\phantom{XXXX}-1\,\leqslant\,cosx\,\leqslant\,1\;\Rightarrow\;$
$\phantom{XX}\Rightarrow\; -1\,\leqslant\,1\,+\,3m\,\leqslant\,1\;\Rightarrow\,\phantom{X}$
$\phantom{XX}\Rightarrow\;-2\,\leqslant\,3m\leqslant\,0\;\Longrightarrow\;$
$\;\boxed{\;-\dfrac{2}{3}\,\leqslant\,m\,\leqslant0\;}\phantom{X}$
×
Num triângulo $\;ABC\;$, o lado $\,a\,$ é oposto ao ângulo de vértice em $\,A\,$, o lado $\,b\,$ é oposto ao ângulo de vértice em $\,B\,$ e o lado $\,c\,$ é oposto ao ângulo de vértice em $\,C\,$. Tem-se que $\;a^2\,=\,b^2\,+\,c^2\,-\,bc\;$. Calcular a medida do ângulo $\;\hat{A}\;$.

 



resposta:

LEI DOS COSSENOS:
"Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".

Resolução:
$a^2 = b^2 + c^2 - 2(b)(c) cos\hat{A}$ (lei dos cossenos)
Comparando-se a relação da lei dos cossenos com a relação fornecida no enunciado, têm-se que :$\;(bc)\centerdot 2cos\hat{A}\,=\,(bc)\;\Rightarrow\;2cos\hat{A}\,=\,1\;\Rightarrow\;cos\hat{A}\,=\,\dfrac{1}{2}\,$ $\,\Rightarrow\;\boxed{\,\hat{A}\,=\,60^o\,}$
Resposta:
o ângulo $\,\hat{A}\,$ mede 60°

×
(ITA) Os lados de um triângulo medem a , b e c (centímetros). Qual o valor do ângulo interno deste triângulo, oposto ao lado que mede a centímetros, se forem satisfeitas as relações: 3a = 7c e 3b = 8c.
a)
30°
b)
60°
c)
45°
d)
120°
e)
135°

 



resposta: Alternativa B

LEI DOS COSSENOS:
"Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".

Resolução:
triângulo ABC cujos lados são os segmentos a, b e c
Na figura, um triângulo genérico $\,\triangle ABC\,$ onde deseja-se a medida do ângulo $\,\hat{A}\,$.
De acordo com a lei dos cossenos temos:
$\;a^2\,=\,b^2\,+\,c^2\,-\,2bc\centerdot (cos\hat{A})\;(I)$
Mas (conforme o enunciado), $\,a\,=\,\dfrac{7c}{3}\,$ e $\,b\,=\,\dfrac{8c}{3}\,$, substituindo em (I)
$\,\left( \dfrac{7c}{3}\right)^{\large 2}\;=\;\left( \dfrac{8c}{3} \right)^{\large 2}\,+\,c^{\large 2}\, -\,2\centerdot \left( \dfrac{8c}{3} \right)\centerdot c \centerdot cos\hat{A}\;\Rightarrow\,$
$\,\Rightarrow\,\left( \dfrac{49c^{\large 2}}{9}\right)\;=\;\left( \dfrac{64c^{\large 2}}{9} \right)^\,+\,\dfrac{9c^{\large 2}}{9}\, -\,2\centerdot \left( \dfrac{24c^{\large 2}}{9} \right)\centerdot cos\hat{A}\,\Rightarrow\,$
$\,\Rightarrow\,49\left( \dfrac{c^{\large 2}}{9}\right)\;=\;64\left( \dfrac{c^{\large 2}}{9} \right)\,+\,9\left(\dfrac{c^{\large 2}}{9}\right)\, -\,2\centerdot 24 \centerdot cos\hat{A}\left( \dfrac{c^{\large 2}}{9} \right)\,$
● dividir a igualdade por c2/9
$\,\Rightarrow\,49\;=\;64\,+\,9\, -\,2\centerdot 24 \centerdot cos\hat{A}\,$
$\,\Rightarrow\,-cos\hat{A}\,=\,\dfrac{49\,-\,64\,-\,9}{2\centerdot 24}\,\Rightarrow\,$
$\,\Rightarrow\,cos\hat{A}\,=\,\dfrac{24}{48}\,\Rightarrow\,cos\hat{A}\,=\,\dfrac{1}{2}\;\Rightarrow\; \hat{A}\,=\,60^o$
Resposta:
medida do ângulo oposto ao lado que mede a centímetros é 60° — alternativa B

×
(ITA - 2005) Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a
a)
$\,\dfrac{\;4\;}{5}\,$
b)
$\,\dfrac{(2\,+\,\sqrt{\;3\;})}{5}\,$
c)
$\,(\dfrac{\;1\;}{2})\sqrt{(2\,+\,\sqrt{3})}\,$
d)
$\,(\dfrac{\;1\;}{4})\sqrt{(4\,+\,\sqrt{3})}\,$
e)
$\,(\dfrac{\;1\;}{3})\sqrt{(2\,+\,\sqrt{3})}\,$

 



resposta: (C)
×
(FUVEST - 1998) No cubo de aresta 1, considere as arestas $\,\overline{AC}\;$ e $\;\overline{BD}\,$ e o ponto médio, $\,M\,$, de $\,\overline{AC}\;$.
a)
Determine o cosseno do ângulo $\,B\hat{A}D\,$.
b)
Determine o cosseno do ângulo $\,B\hat{M}D\,$.
c)
Qual dos ângulos $\,B\hat{A}D\,$ ou $\,B\hat{M}D\,$ é maior? Justifique.
cubo de aresta 1

 



resposta: a) $\,cosB\hat{A}D\,=\,\frac{\,\sqrt{6\,}\,}{3}\,$
b) $\,cosB\hat{M}D\,=\,\frac{\,7\,}{9}\,$
c) como a função cosseno é decrescente para ângulos agudos, se cos(BÂD) > cos(BMD) decorre que (BÂD) < (BMD)
×
(FUVEST - 2015) No cubo $\,ABCDEFGH\,$, representado na figura, cada aresta tem medida 1 . Seja $\;M\;$ um ponto na semirreta de origem $\;A\;$ que passa por $\;E\;$. Denote por θ o ângulo $\,B\hat{M}H\,$ e por $\;x\;$ a medida do segmento $\,\overline{AM}\,$ .
cubo com semirreta
a)
Exprima $\,\operatorname{cos}\theta\,$ em função de $\;x\;$
b)
Para que valores de $\,x\,$ o ângulo $\,\theta\,$ é obtuso?
c)
Mostre que, se $\,x\;=\;4\,$, então $\,\theta\,$ mede menos que 45°

 



resposta: a)
cubo com ângulo teta para resposta
Resolução:
Observe na figura ao lado que no triângulo HMB:
i)
pela lei dos cossenos temos: $\;(HB)^2\,=\,$ $\,(MB)^2\,+\,(MH)^2\,-\,(MB)(MH)\operatorname{cos}\theta\;$
ii)
o lado (HB) é a diagonal do cubo de lado 1, portanto mede $\;1\sqrt{\,3\,}\;$
iii)
o lado (MB) é hipotenusa do triângulo retângulo MAB e pelo teorema de Pitágoras $\;MB\,=\, \sqrt{\;x^2\;+\;1^2\;}\;\Rightarrow$ $\;MB\,=\, \sqrt{\;x^2\;+\;1\;}\;$
iv)
o lado (MH) é hipotenusa do triângulo retângulo MEH e pelo teorema de Pitágoras $\;MH\,=\,\sqrt{\,(x\,-\,1)^2\,+\,1^2\;}\;\Rightarrow$ $\;MH\,=\, \sqrt{\;(x\,-\,1)^2\;+\;1\;}\;\;\Rightarrow$ $\;MH\,=\, \sqrt{\;x^2\,-\,2x\,+\,2\;}\;$
v)
Substituindo os valores na equação obtida em i) temos:
$\;\operatorname{cos}\theta\;=\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}$
b)
Um ângulo é obtuso quando seu cosseno é menor que zero.
então:
$\;\operatorname{cos}\theta \;\lt\;0\;\Leftrightarrow$ $\;\dfrac{x^2\,-\,x}{\sqrt{\;x^2\,+\,1\;}\centerdot\sqrt{\;x^2\,-\,2x\,+\,2\;}}\;\lt\;0\;$
Como o denominador da fração acima é a multiplicação entre duas raízes quadradas, esse denominador é sempre positivo. Resta então que, para que a fração seja menor que zero é necessário que $\;(x^2\,-\,x\;)\;$ seja menor que zero.
gráfico da função x ao quadrado menos 1
raízes : $\;x_1\,=\,0\phantom{X}x_2\,=\,1\;$; o coeficiente de $\,x^2\,$ é maior do que zero, então a expressão será negativa para $\;0\,\lt\,x\,\lt\,1\;$
O ângulo $\;\theta\;$ é obtuso para $\;0\,\lt\,x\,\lt\,1\;$
c) basta substituir x por quatro na equação do cosseno de $\,\theta\,$ e constatar que se x = 4 o cosseno é $\,\sqrt{\frac{144}{170}}\,$. Como $\,\sqrt{\frac{144}{170}}\,$ é menor que $\, cos45^o \;=\;\frac{\,\sqrt{\,2\,}\,}{2}\,$, então θ < 45° para x = 4.
×
Dê o valor de:
a)
$\,cos\,\frac{\,5\pi\,}{3}\,$
b)
$\,cos\,\frac{\,7\pi\,}{6}\,$
c)
$\,cos\,\frac{\,7\pi\,}{4}\,$
d)
$\,cos\,720^o\,$
e)
$\,cos\,120^o\,$
f)
$\,cos\,\frac{\,\pi\,}{2}\,$
g)
$\,cos\,150^o\,$
h)
$\,cos\,\left(\frac{\,\pi\,}{2}\,+\,\pi \right)\,$
i)
$\,cos\,x\,-\,cos\,y\,$ sendo $\,x\,+\,y\,=\,2\pi\,$

 



resposta:
a)
1/2
b)
$\,\frac{-\sqrt{3}}{2}\,$
c)
$\,\frac{\sqrt{2}}{2}\,$
d)
1
e)
-1/2
f)
0
g)
$\,\frac{-\sqrt{3}}{2}\,$
h)
0
i)
0

×
Forneça o sinal de cada uma das expressões abaixo:
a)
cos 125° - cos 124°
b)
$cos\,\dfrac{\,\pi\,}{7}\,\centerdot \,cos\,7\pi\,\centerdot\,cos\,4\pi$
c)
(1 + cos x) . (1 - cos x) , x ∈ ${\rm I\!R}$

 



resposta: a)negativo b)negativo c)positivo ou nulo
×
Para que se tenha cos x = 3m - 1 , quais são os possíveis valores de m ?

 



resposta: $\,0\,\leqslant\,m\,\leqslant\,\frac{2}{3}\;,\,m\,\in\,{\rm\,I\!R}\;$
×
Escreva a expressão geral dos arcos x para os quais temos:
a) $\,cos\,x\,=\,-\dfrac{\,\sqrt{\,2\;}}{2}\,$
b) $\,cos\,x\,=\,0\,$

 



resposta: a) $\,x\,=\,\pm\dfrac{\,3\pi\,}{4}\,+\,2k\pi\;,\;k\,\in\,\mathbb{Z}\,$
b) $\,x\,=\,\dfrac{\,\pi\,}{2}\,+\,k\pi\;,\;k\,\in\,\mathbb{Z}\,$
×
Sendo $\phantom{X}k\;\in\;\mathbb{Z}\phantom{X}$, calcule em cada caso o valor de $\,cos\,x\,$, com:
a)
$\,x\,=\,2k\pi\,$
b)
$\,x\,=\,(2k\,+\,1)\pi\,$
c)
$\,x\,=\,(2k\,-\,1)\dfrac{\,\pi\,}{2}$
d)
$\,x\,=\,\pm\dfrac{\,\pi\,}{3}\,+\,2k\pi\,$

 



resposta: a)1b)-1c)0d)1/2
×
Encontre o perímetro do triângulo OAB , situado no 2º quadrante do ciclo trigonométrico.
ciclo trigonométrico com arco 120 graus

 



resposta: $\,\frac{\,3\,+\,\sqrt{\,3\;}}{2}\,$
×
Sendo $\,sen\,x\,=\,\frac{\,4\,}{\,5\,}\phantom{X}$ e $\phantom{X}\frac{\,\pi\,}{\,2\,}\,\lt\,x\,\lt\,\pi\,$, determine $\,cos\,x\,$.

 



resposta: -3/5
×
Se $\,cos\,x\,=\,\frac{\,2\,}{\,3\,}\phantom{X}$ e $\,x\,$ está no primeiro quadrante, determine $\,sen x\,$ e $\,sen \left(\frac{\,\pi\,}{\,2\,}\,-\,x\,\right)\,$

 



resposta: $\,\dfrac{\,\sqrt{\,5\,}}{\,3\,}\,$ e $\,\dfrac{\,2\,}{\,3\,}\,$
×
Sabendo que $\phantom{X}6\,cos\,x\,-\,1\,=\,4\phantom{X}$, com $\,\frac{\,3\pi\,}{\,2\,}\,\lt\,x\,\lt\,2\pi\;$, obtenha $\,sen\,x\,$

 



resposta: $\,-\frac{\,\sqrt{\,11\,}}{\,6\,}\,$
×
Encontre os valores de x para os quais temos:
a)
sen x = cos x
b)
sen² x = 1

 



resposta: a) $\,\frac{\pi}{4}\,+\,k\pi\;,\;k\,\in\,\mathbb{Z}\,$ b) $\,\frac{\pi}{2}\,+\,k\pi\;,\;k\,\in\,\mathbb{Z}\,$
×
Calcule o valor de
a) $\,sen^2\,70^o\,+\,cos^2\,100^o\,$
b) $\,sen^2\,55^o\,+\,cos^2\,55^o\,$

 



resposta: a)1 b)1
×
Sabe-se que $\,sen\,\dfrac{\,4\pi\,}{\,9\,}\,=\,a\,$
a)
Qual o sinal de $\,a\,$? Justifique.
b)
Calcule, em função de $\,a\,$, $\,sen\,\dfrac{\,5\pi\,}{\,9\,}\,$.
c)
Calcule $\,sen\,\dfrac{\,\pi\,}{\,18\,}\;$ e $\;cos\,\dfrac{\,\pi\,}{\,18\,}\;$

 



resposta: a) positivo porque o arco $\,\frac{4\pi}{9}\,$ pertence ao primeiro quadrante $\,0\,\lt\,\frac{4\pi}{9}\,\lt\,\frac{\pi}{2}\,$
b)$\,a\,$
c)$\,sen\frac{\pi}{18}\,=\,\sqrt{1\,-\,a^2}\,$ e $\,cos\frac{\pi}{18}\,=\,a\,$
×
Sabendo que $\,sen x - cos x = a\,$, calcule:
a)$\,sen\,x\,\centerdot\,cos\,x\,$
b)$\,sen^3\,x\,-\,cos^3\,x\,$

 



resposta: a)$\,\dfrac{1\,-\,a^2}{2}\,$
b)$\,\dfrac{3a\,-\,a^3}{2}\,$
×
a) Para todo arco $\,x\,$ real, existe o arco $\phantom{X}\boxed{\; x'\,=\,\pi\,-\,x\;}\phantom{X}$ cuja imagem é simétrica à   em relação ao  

b) Para todo arco $\,x \in {\rm I\!R}\,$ existe o arco $\phantom{X}\boxed{\; x'\,=\,x\,-\,\pi\,\;}\phantom{X}$ cuja imagem é simétrica à   em relação à  

c) Para todo arco $\,x\,$ real, existe o arco $\phantom{X}\boxed{\; x'\,=\,2\pi\,-\,x\;}\phantom{X}$ cuja imagem é simétrica à   em relação ao  

d) Para todo arco $\,x \in {\rm I\!R}\,$ existe o arco $\phantom{X}\boxed{\; x'\,=\,\dfrac{\,\pi\,}{\,2\,}\,-\,x\,\;}\phantom{X}$ cuja imagem é simétrica à   em relação à  


 



resposta: a) imagem de $\,x\,$ - eixo dos senos
b) imagem de $\,x\,$ - origem dos eixos
c) imagem de $\,x\,$ - eixo dos cossenos
d) imagem de $\,x\,$ - reta bissetriz do primeiro quadrante

×
Dois lados de um triângulo medem 8 m e 12 m e formam entre si um ângulo de 120° . Calcular o terceiro lado.

 



resposta: $\,4\sqrt{19}\,m\,$
×
(FEI - 1977) Calcular $\phantom{X}c\phantom{X}$, sabendo que:
$\,a\,=\,4\,$
$\,b\,=\,3\sqrt{\,2\,}\,$
$\,\hat{C}\,=\,45^o\,$
triângulo escaleno

 



resposta: $\,c\,=\,\sqrt{10}\,m\,$
×
Um triângulo tem lados a = 10 m , b = 13 m e c = 15 m . Calcular o ângulo $\,\hat{A}\,$ do triângulo.

 



resposta: $\,arc\,cos\dfrac{49}{65}\,$
×
Calcular os três ângulos internos de um triângulo $\,ABC\,$ sabendo que a = 2, b = $\,\sqrt{6}\,$ e c = $\,\sqrt{3}\,$ + 1.

 



resposta: $\,\hat{A}\,=\,45^o,\,\hat{B}\,=\,60^o\,e\,\hat{C}\,=\,75^o\,$
×
Num triângulo ABC , o ângulo  é obtuso. Os lados AB e AC medem 3 e 4 , respectivamente. Então:
a) BC < 4
b) BC < 5
c) BC > 7
d) 5 < BC < 7
e) nenhuma das anteriores é correta

 



resposta: (D)
×
Determinar o conjunto domínio, o conjunto imagem e o período da função $\phantom{X}y\,=\,2\,+\,3\operatorname{cos}\left(2x\,+\,\dfrac{\,\pi\,}{\,3\,}\,\right)\phantom{X}$.

 



resposta: domínio: $\,\mathbb{D}\,=\,{\rm\,I\!R}\,$ - imagem: $\,Im\,=\,\left[\,-1;\,5\,\right]\,$ - período: p = π
×
Construir o gráfico da função $\,f\,:\,{\rm I\!R}\rightarrow\,{\rm I\!R}\,$ definida por $\phantom{X}f(x) = 1 + \operatorname{cos}\left(\,2x\,-\,\dfrac{\,\pi\,}{\,4\,}\right)\phantom{X}$

 



resposta:
gráfico da função com cosseno

×
Resolver em $\,{\rm I\!R}\,$ a equação $\phantom{X}cos\,2x\;=\;0\phantom{X}$

 



resposta:
Devemos notar que se o cosseno de 2x é zero, então $\,2x = \pm\,\dfrac{\,\pi\,}{\,2\,}\,+\,2k\pi\;\Rightarrow$ $\;x = \pm\,\dfrac{\,\pi\,}{\,4\,}\,\,+\,k\pi,\;k\,\in\,\mathbb{Z}\,$
O conjunto solução então:
$\,\mathbb{S}\,=\,\lbrace\,x\,\in\,{\rm I\!R}\phantom{X}|\phantom{X}x\,=\,\pm\,\dfrac{\pi}{4}\,+\,k\pi\,,\phantom{X} k\,\in\,\mathbb{Z}\rbrace\,$
×
Veja exercÍcio sobre:
potências
potenciação
raízes
radiciação