Dar as coordenadas das projeções dos pontos A(2 ; -3) , B(3 ; -1) , C(-5 ; 1) , D(-3 ; -2) , E(-5 ; -1) , sobre os eixos cartesianos.
resposta:
Resolução: Para um ponto $\;P(x;y)\;$, vamos chamar de $\;P_x\;$ e $\;P_y\;$ as projeções do ponto $\,P\,$ respectivamente sobre o eixo das abscissas (x) e sobre o eixo das ordenadas (y).Resposta:
Dar as coordenadas dos pontos simétricos aos pontos A(-1 , 2) ; B(3 , -1) ; C(-2 , -2) ; D(-2 , 5) ; E(3 , -5) em relação ao eixo das ordenadas.
resposta:
Resolução: Para um ponto $\;P(x\, ,\,y)\;$ existe o ponto $\;P_1\;$, simétrico a $\;P\;$ em relação ao eixo das ordenadas, conforme a figura:Observando a figura acima, podemos concluir:
Determinar em que quadrante pode estar situado o ponto P(x , y) se:
a)
$\,xy \, >\, 0\,$
b)
$\,xy \, < \, 0\,$
c)
$\,x\,-\,y\,=\,0\,$
d)
$\,x\,+\,y\,=\,0\,$
resposta: Resolução:
a)
se $\,xy \, > \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y > 0 ⇒ P(x,y) ∈ 1º QUADRANTE 2ª. possibilidade: x < 0 e y < 0 ⇒ P(x,y) ∈ 3º QUADRANTE
b)
se $\,xy \, < \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y < 0 ⇒ P(x,y) ∈ 4º QUADRANTE 2ª. possibilidade: x < 0 e y > 0 ⇒ P(x,y) ∈ 2º QUADRANTE
c)
se x - y = 0 ⇒ x = y ⇒ $ \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,1º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,3º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por: