(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,2)\;$, $\;B=(2,-2)\;$ e $\;C=(4,3)\;$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\;\overline{BC}\;$ é:
(CESCEM - 1976) O ponto $(a, -b)$ pertence ao interior do 2º quadrante. Os pontos $(-a,b)$ e $(-a,-b)$ pertencem, respectivamente, aos quadrantes: a) 3º e 1º b) 3º e 4º c) 4º e 3º d) 4º e 1º e) 1º e 3º
(E. E. LINS - 1968) Dados os vértices $\;P(1,1)\,$, $\;Q(3,-4)\,$ e $\;R(-5,2)\,$ de um triângulo, o comprimento da mediana que tem extremidade no vértice $\;Q\;$ é:
(CESCEA - 1968) Dado o segmento $\;\overline{AB}\;$ de extremidades $\;A \equiv (-4,1)\;$ e $\;B \equiv (5,7)\;$ as coordenadas do ponto $\;C\;$ que divide na razão $\;\dfrac{\overline{AC}}{\overline{CB}} = 4\;$ são:
(CESCEA - 1972) Uma das diagonais de um quadrado tem extremidades $\;A\,\equiv\,(1,1)\;$ e $\;C\,\equiv\,(3,3)\;$. As coordenadas dos outros dois vértices do quadrado são:
(CESCEA - 1968) Sejam A, B e C números reais quaisquer. Dada a equação $\;Ax + By + C = 0\,$, assinale dentre as afirmações abaixo a correta:
a) se $A \ne 0$ e $B \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem b) se $B \ne 0$ e $C=0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem, não paralela a nenhum dos eixos c) Se $A = 0$ e $C \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta paralela ao eixo $0x$ d) se $A \ne 0$, $B = 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$ e) se $A = 0$, $B \ne 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,\,2)\,$, $\;B=(2,\,-2)\,$ e $\;C=(4,\,3)\,$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\,\overline{BC}\,$ é:
Dar as coordenadas das projeções dos pontos A(2 ; -3) , B(3 ; -1) , C(-5 ; 1) , D(-3 ; -2) , E(-5 ; -1) , sobre os eixos cartesianos.
resposta:
Resolução: Para um ponto $\;P(x;y)\;$, vamos chamar de $\;P_x\;$ e $\;P_y\;$ as projeções do ponto $\,P\,$ respectivamente sobre o eixo das abscissas (x) e sobre o eixo das ordenadas (y).Resposta:
Dar as coordenadas dos pontos simétricos aos pontos A(-1 , 2) ; B(3 , -1) ; C(-2 , -2) ; D(-2 , 5) ; E(3 , -5) em relação ao eixo das ordenadas.
resposta:
Resolução: Para um ponto $\;P(x\, ,\,y)\;$ existe o ponto $\;P_1\;$, simétrico a $\;P\;$ em relação ao eixo das ordenadas, conforme a figura:Observando a figura acima, podemos concluir:
Determinar em que quadrante pode estar situado o ponto P(x , y) se:
a)
$\,xy \, >\, 0\,$
b)
$\,xy \, < \, 0\,$
c)
$\,x\,-\,y\,=\,0\,$
d)
$\,x\,+\,y\,=\,0\,$
resposta: Resolução:
a)
se $\,xy \, > \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y > 0 ⇒ P(x,y) ∈ 1º QUADRANTE 2ª. possibilidade: x < 0 e y < 0 ⇒ P(x,y) ∈ 3º QUADRANTE
b)
se $\,xy \, < \, 0\;$ então teremos as duas possibilidades: 1ª. possibilidade: x > 0 e y < 0 ⇒ P(x,y) ∈ 4º QUADRANTE 2ª. possibilidade: x < 0 e y > 0 ⇒ P(x,y) ∈ 2º QUADRANTE
c)
se x - y = 0 ⇒ x = y ⇒ $ \left\{\begin{array}{rcr} P(x\, ,\,y) \in \,1º\;\text{QUADRANTE} \phantom{XX}\text{ou}& \\ P(x\,,\,y) \in \,3º\;\text{QUADRANTE} \phantom{XXX}& \\ \end{array} \right.$
(MACKENZIE) Os pontos A (0 , 0) e B (1 , 0) são vértices de um triângulo equilátero ABC , situado no $\;1^{\underline{o}}\,$ QUADRANTE. O vértice C é dado por:
(MAPOFEI - 1970) Pelo ponto $\,P\,$ de coordenadas cartesianas ortogonais $\,(\operatorname{cos}\beta\,$; $\,\operatorname{sen}\alpha)\phantom{X}$, com $\,(0\,\leqslant\,\alpha\,<\,\beta\,\leqslant\,\dfrac{\pi}{2})\,$ passam duas retas $\,r\,$ e $\,s\,$ paralelas aos eixos coordenados (ver figura)
a)
Determinar as coordenadas das intersecções de $\,r\,$ e $\,s\,$ com a circunferência $\,x^2\,+\,y^2\,=\,1\,$.
b)
Determinar a equação da reta $\,\overleftrightarrow{PM}\,$, onde $\,M\,$ é o ponto médio do segmento $\,\overline{AB}\,$.
c)
Demonstrar analiticamente que as retas $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ são perpendiculares.
resposta: a) $\,A(cos\alpha\,;\,sen\alpha)\,$, $\,B(cos\beta\,;\,sen\beta)\,$ $\,C(-cos\alpha\,;\,sen\alpha)\,$, $\,D(cos\beta\,;\,-sen\beta)\,$ b) $\,cos\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,x\,-\,sen\dfrac{\alpha\,+\,\beta}{2}\,\centerdot\,y\,-\,cos\dfrac{\beta\,-\,\alpha}{2}\,\centerdot\,cos(\beta\,+\,\alpha)\,=\,0\,$ c) basta provar que o produto dos coeficientes angulares de $\,\overleftrightarrow{CD}\,$ e $\,\overleftrightarrow{PM}\,$ é igual a -1.