Lista de exercícios do ensino médio para impressão
O gráfico representa uma relação binária de $\,A\,$ em $\,B\,$. Responda em relação ao gráfico:
a)
Se representa ou não uma função de $\,A\,$ em $\,B\,$;
b)
em caso afirmativo, determinar o DOMÍNIO, o CONTRADOMÍNIO e o CONJUNTO IMAGEM da mesma.
função de A em B

 



resposta: a) é função.
b) D(f) = [1;4]
CD(f) = [1;3]
Im(f) = [2;3]

×
Em relação ao gráfico a seguir que representa uma relação binária de $\,A\,$ em $\,B\,$, responda as questões:
a)
Se o gráfico representa ou não uma função de $\,A\,$ em $\,B\,$;
b)
Em caso afirmativo, determinar o DOMÍNIO, o CONTRADOMÍNIO e o CONJUNTO IMAGEM da mesma.
gráfico cartesiano de uma relação binária entre conjuntos

 



resposta: não é uma função.

×
Em relação ao gráfico a seguir que representa uma relação binária de $\,A\,$ em $\,B\,$, responda as questões:Se o gráfico representa ou não uma função de $\,A\,$ em $\,B\,$;Em caso afirmativo, determinar o DOMÍNIO, o CONTRADOMÍNIO e o CONJUNTO IMAGEM da mesma.
relação binária entre os conjuntos A e B

 



resposta: a) é função
b) D(f) = [1;4]
CD(f) = [1;3]
$\,Im(f)\,=\,$ $\lbrace y \in \mathbb{R} \;\mid\; 1 \leqslant y < 2\,$ ou $\, y = 3 \rbrace$
×
(UEMT) O domínio e o contradomínio de uma função $\,f\,$ são subconjuntos de $\,\mathbb{R}\,$. Sendo $\,f\,$ dada por $\,f(x)\,=\, {\large \dfrac{1}{\sqrt{x - x^2}}}\,$ o dominio de $\,f\,$ pode ser:
a)
[0; 1]
b)
[0; 1[
c)
]0; 1[
d)
]1;$\,+\infty\,$[
e)
]$\,-\infty\,$; 0[

 



resposta: (C)
×
(UBERABA) Dentre os gráficos abaixo, o que melhor se adapta a uma função bijetora (injetora e sobrejetora) com domínio $\,\mathbb{R}\,$ e contradomínio $\,\mathbb{R}\,$ é:
a)
relação binária cobrinha
b)
relação binária subida
c)
relação binária bumerangue
d)
função bijetora
e)
função R em R

 



resposta: (D)
×
(MACKENZIE) A função $\,f\,$ definida em $\,\mathbb{R}- \lbrace 2 \rbrace\,$ por $\;f(x)\,= \large{\,\frac{2\,+\,x}{2\,-\,x}\,}\;$ é inversível. O seu contradomínio é $\,\mathbb{R} \,-\,\lbrace a \rbrace\;$. O valor de $\;a\;$ é:
a)
2
b)
-2
c)
1
d)
-1
e)
0

 



resposta: (D)
×
Se $\,f\,$ é uma função de $\;{\rm I\!N}^{\Large *}\;$ em $\;{\rm I\!R}\;$ definida por $\,f(x)\;=\;(-2)^{\Large x}\,+\,3x\phantom{X}$ então:
a)
$\,D(f)\;=\;{\rm I\!R}\phantom{X}$ e $\phantom{X}CD(f)\;=\;{\rm I\!N}^*\,$
b)
$\,f\,=\,\lbrace (1\,;\,1),\,(2\,;\,10),\,(3\,;\,1),\,(4\,;\,4),\,...\rbrace\,$
c)
$\,Im(f)\,=\,\lbrace\,1;\,10;\,1;\,4;\,...\,\rbrace\,$
d)
$\,f\,$ é estritamente crescente
e)
$\,Im(f)\;\subset\;{\rm I\!R}\,$

 



resposta: (E)O conjunto imagem da função - Im(f) - é um subconjunto do contradomínio ${\rm I\!R}$
×
Dados os conjuntos A = {1; 2; 3} e B = {4; 5; 6; 7} e as relações binárias de A em B a seguir:
a)
diga se cada relação binária é ou não uma função de A em B.
b)
sendo função, determine o seu domínio, o seu contradomínio e a sua imagem.
(I)
relação binária de A em B - diagrama de Venn-Euler
 
(II)
relação binária de A em B - não é função
 
(III)
relação binária de A em B - funçao
 
(IV)
relação binária de A em B - o diagrama representa uma função
 

 



resposta: I) não é função II) não é função

III) sim, é função de A em B
D(f) = {1; 2; 3}
CD(f) = {4; 5; 6; 7}
Im(f) = {5; 6}

IV) sim, é função de A em B
D(f) = {1; 2; 3}
CD(f) = {4; 5; 6; 7}
Im(f) = {4; 5; 6}


×
Veja exercÍcio sobre:
relação binária
função
domínio de uma função
contradomínio
conjunto imagem