Lista de exercícios do ensino médio para impressão
(PUC) - O conjunto
$\phantom{X}A\,=\,\lbrace\,x\;\vert \;x\,=\,\dfrac{(n + 1)^2 - (n - 1)^2}{2}, n\in \mathbb{N} \rbrace$
equivale:
a)
ao conjunto dos quadrados naturais.
b)
ao conjunto dos pares positivos.
c)
ao conjunto dos quadrados dos números ímpares.
d)
ao conjunto vazio.
e)
ao conjunto dos naturais não nulos.

 



resposta: (B)
×
(OSEC) Sendo $\;a$, $b\;$ e $\;c\;$ três números distintos tais que {$\;a\;$, $\;b$, $\;c\;$} $\in \mathbb{N^*}\;$, então, a expressão $\;(9a\,+\,6b\,-\,156)\centerdot 4a\;$ é sempre divisível por:
a)
9
b)
6
c)
15
d)
30
e)
0

 



resposta: Alternativa B
×
(FUVEST) O número 143 é:
a)
quadrado de um número natural.
b)
produto de dois números pares.
c)
primo.
d)
divisível por 13.
e)
um divisor de 1431.

 



resposta: Alternativa D
×
(SANTA CASA) O M.M.C. de $\;(x^2\,-\,y^2)\,$,$\;(x^2 + 2xy + y^2)\;$ e $\;(x^3 + y^3)$ é dado por:
a)
$(x + y)^2(x - y)(x^2 - xy + y^2)$
b)
$(x + y)(x - y)^2(x^2 - xy + y^2)$
c)
$(x + y)^4(x - y)(x^2 - xy + y^2)$
d)
$(x + y)^2(x - y)^2 (x^2 - xy + y^2)^2$
e)
$(x + y)(x^2 - y^2)^2 (x^2 - xy + y^2)^2$

 



resposta: A nota: M.M.C. = mínimo múltiplo comum.
×
(OSEC) Escolha a alternativa correta:
a)
Sendo dada a expressão algébrica $\;a^2\,-\,5a\,+\,6\;$, conclui-se que $\;a\,=\,2\;$ ou $\;a\,=\,3\;$.
b)
Qualquer que seja o número $\;a \in \mathbb{N},\,a \neq 0\;$, tem-se que $\;a\;$ é múltiplo e divisor de $\;a\;$
c)
Todo número real $\;a\;$ é múltiplo e divisor de $\;1\;$.
d)
Qualquer que seja o número real $\;a\;$, tem-se que $\;a\;$ é múltiplo e divisor de $\;a\;$.
e)
Nenhuma das anteriores é correta.

 



resposta: (B)
×
(FAAP) Sendo $\phantom{X}(\mu - a)\phantom{X}$ e $\phantom{X}(\mu + a)\phantom{X}$ dois números primos (isto é, são naturais maiores que $1$ e só divisíveis por eles mesmos e pela unidade), então, podemos afirmar que:
a)
$\mu ^2 - a^2\;$ é primo.
b)
$\mu\;$ e $\;a\;$ são primos.
c)
$\mu^2 + a^2\;$ é primo.
d)
$(2\mu)\;$ pode ser escrito como soma de 2 primos.
e)
n.d.a.

 



resposta: (D)
×
(ITA - 2012) Sejam $\;\;r_1\,,\;r_2\;\;e\;\;r_3\;$ números reais tais que $\;\;r_1 - r_2\;\;$ e $\;\;r_1 + r_2 + r_3\;$ são racionais. Das afirmações:

I. Se $\;r_1\:$ é racional ou $\;r_2\;$ é racional, então $\;r_3\;$ é racional;
II.Se $\;r_3\:$ é racional, então $\;r_1 + r_2\;$ é racional;
III.Se $\;r_3\;$ é racional, então $\;r_1\;$ e $\;r_2\;$ são racionais,

é (são) sempre verdadeira(s)
a) apenas I. b) apenas II. c) apenas III.
d) apenas I e II.e) I, II e III.



 



resposta: alternativa E
×
Sendo $\,A\,=\,\lbrace x\,\in\,\mathbb{R} \mid \,1\,\leqslant\,x\, < \,3\,\rbrace\;$ e $\;B\,=\,\lbrace x\,\in\,\mathbb{R} \mid \,x\,\leqslant\,1 \; \text{ ou }\,x > 2\,\rbrace\;\,$, determinar:
a)
$\,A \cup B\,$
b)
$\,A \cap B\,$
c)
$\,A \,-\, B\,$
d)
$\,B \,-\, A\,$
e)
$\,\large{\overline{A}} \,$
Obs.: $\,\large{\overline{A}} \;$ é o complementar de A em relação a $\,\mathbb{R}\;$, ou $\;\overline{A} \,=\, \sideset{}{_A^\mathbb{R}}\complement \,$


 



resposta:
a)
conjunto A unido com conjunto B
$\boxed{\,A \cup B\,=\, \mathbb{R}\,}$
b)
intersecção do conjunto A com o conjunto B
$\boxed{\small\,A \cap B\,=\,\lbrace x\,\in\,\mathbb{R} \mid \,x\,=\,1\;\text{ ou }\; 2 < x < 3\,\rbrace\,}$
c)
subtração de conjuntos A menos B
$\boxed{\,A\,-\,B\,=\,\lbrace x\,\in\,\mathbb{R} \mid 1\,<\,x\, \leqslant 2\,\rbrace\,}$
d)
subtração de conjuntos - conjunto B menos conjunto A
$\boxed{\small\,B\,-\,A\,=\,\lbrace x\,\in\,\mathbb{R} \mid \,x\,<\,1\;\text{ ou }\;x \geqslant 3\,\rbrace\,}$
e)
complementar do conjunto A em relação a R
$\boxed{\,\overline{A}\,=\,\lbrace x\,\in\,\mathbb{R} \mid \,x\,<\,1\;\text{ ou }\;x \geqslant 3\,\rbrace\,}$

×
(PUC) Seja $\;x\;$ elemento de $\;\mathbb{A}\;$. Se $\;x\,\notin \;]{\small -1};\,2]\,\text{, }\; x < 0\;$ ou $\; x \geqslant 3\,$, determine $\;\mathbb{A}\,$.

 



resposta: $\,A\,=\,\lbrace x\,\in\,\mathbb{R} \mid \,x\,\leqslant \, -1 \; \text{ ou } \;x\, \geqslant \, 3 \,\rbrace\,$

×
Dados os conjuntos $\;A\,=\,\lbrace\,2;\,4\,\rbrace\;$ e $\;B\,=\,\lbrace\,1;\,3;\,5\,\rbrace\;$ construa a relação binária $\;f\;$ de A em B , tal que $\phantom{X}f\;=\;\lbrace\,(x; y)\, \in \, A\,\times\,B\;|\;x\,>\,y\,\rbrace\phantom{X}$

 



resposta: {(2;1);(4;1);(4;3)}
×
(OSEC) No produto cartesiano $\;\mathbb{R}\times\mathbb{R}\;$, os pares ordenados $\;(3x\,+\,y\,;\,1)\;$ e $\;(7\,;\,2x\,-\,3y)\;$ são iguais. Os valores de x e y são respectivamente:
a) 1 e 2b) -1 e 2c) 2 e 1d) -2 e 1e) -1 e -2
1 e 2-1 e 22 e 1-2 e 1-1 e -2

 



resposta: (C)
×
Sejam A e B dois conjuntos finitos tais que:
I)
n(A × B) = 6
II)
Os pares (2; 1), (2; 5) e (3; 4) são elementos de A × B.
Nestas condições, têm-se:
a)
A = {1,4,5}
b)
B = {2,3}
c)
A = {1,2,3}
d)
B = {4,5}
e)
A ∩ B = ∅

 



resposta: (E)
×
Veja exercÍcio sobre:
conjuntos numéricos
números naturais