Em relação ao gráfico a seguir que representa uma relação binária de $\,A\,$ em $\,B\,$, responda as questões:Se o gráfico representa ou não uma função de $\,A\,$ em $\,B\,$;Em caso afirmativo, determinar o DOMÍNIO, o CONTRADOMÍNIO e o CONJUNTO IMAGEM da mesma.
resposta: a) é função b) D(f) = [1;4] CD(f) = [1;3] $\,Im(f)\,=\,$ $\lbrace y \in \mathbb{R} \;\mid\; 1 \leqslant y < 2\,$ ou $\, y = 3 \rbrace$ ×
(PUC) Seja $\,D\,=\,\lbrace \, 1, \,2, \,3, \,4, \,5 \,\rbrace\,$, e $\,f\,:\, D \rightarrow \mathbb{R}\;$ a função definida por $\,f(x)\,=\,(x\,-\,2)\centerdot(x\,-\,4)\,$. Então:
a)
$f\,$ é sobrejetora
b)
$f\,$ é injetora
c)
$f\,$ é bijetora
d)
O conjunto imagem de $\,f\,$ possui 3 elementos somente
Determine o vértice e o conjunto imagem da função $\;f\;\text{ de }\,\mathbb{R}\,\text{ em } \,\mathbb{R}\;$ definida por $\;f(x)\,=\,2x^2 \,-\,12x\,+\,10\;$.
resposta: Vértice: $\,V\,=\,(3;\,-8)\;$ Conjunto Imagem: $\;Im(f)\,=\,[-8;\,+\infty[ \;$ ou $\;Im(f)\,=\,\lbrace \,y\in \mathbb{R} \mid \; y \geqslant -8 \,\rbrace$ ×
(MAUÁ) Determinar a equação da parábola que tem seu eixo paralelo ao eixo $\;y\;$, tangencia o eixo $\;x\;$ no ponto $\;V(-1,\,0)\;$ e corta o eixo $\;y\;$ no ponto $\;P(0;\,1)\;$.
(FAAP) Seja $\phantom{X} f\,:\,[-3\,;\,0] \rightarrow \mathbb{R}\phantom{X}$ a função tal que $\phantom{X} f(x)\,=\,(x\,+\,1)(x\,+\,3) \phantom{X}$. O conjunto imagem de $\;f\;$ é:
Dados os conjuntos A = {1, 2, 3, 4} e B = {1, 2, 3, 5, 6, 7}, calcular o número de funções injetoras de A em B.
resposta: Resolução: O número de funções injetoras de A em B é exatamente o $\,A_{\large 6,4}\,$, pois cada conjunto imagem é um "conjunto ordenado" de 4 elementos escolhidos entre os 6 elementos do conjunto B. Assim, o número total de funções injetoras de A em B é $\,A_{\large 6,4}\,=\,6\centerdot 5\centerdot 4\centerdot 3\,$, e portanto, 360. Resposta: O número de funções injetoras de A em B é 360. ×
Fazer o gráfico da função $\phantom{X}f(x) = 2 \centerdot sen x\phantom{X}$ e determinar o seu período e seu conjunto Imagem.
resposta: (E)O conjunto imagem da função - Im(f) - é um subconjunto do contradomínio ${\rm I\!R}$ ×
Responda para cada um dos gráficos abaixo se representam ou não uma função e, em caso positivo, estabeleça o conjunto domínio e o conjunto imagem.
a)
b)
c)
d)
e)
f)
resposta:
a) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,-2\,\leqslant\,x\,\leqslant\,3\,\rbrace\,\;$ $\,Im\,=\,\lbrace\,y\,\in\,{\rm\,I\!R}\,|\,-1\,\leqslant\,y\,\leqslant\,4\,\rbrace\,$ ou D = [-2 ; 3] e Im = [-1 ; 4]
b) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,x\,\neq\,0\,\rbrace\,\;$ $\,Im\,=\,\lbrace\,y\,\in\,{\rm\,I\!R}\,|\,-2\,\lt\,y\,\lt\,0\phantom{X}{\text ou}\phantom{X}1\,\lt\,y\,\lt\,2\,\rbrace\,$ ou D = R-{0} e Im = ]-2 ; 0[ ∪ ]1 ; 2[
c) não é função.
d) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,-2\,\leqslant\,x\,\leqslant\,1\,\rbrace\,\;$ $\,Im\,=\,\lbrace\,y\,\in\,{\rm\,I\!R}\,|\,0\,\leqslant\,y\,\leqslant\,4\,\rbrace\,$ ou D = [-2 ; 1] e Im = [0 ; 4]
e) não é função
f) $\,D\,=\,\lbrace\,x\,\in\,{\rm I\!R}\,|\,-2\,\lt\,x\,\lt\,2\,\rbrace\,\;$ $\,Im\,=\,\lbrace\,1; 2\,\rbrace\,$ ou D = ]-2 ; 2[ e Im = {1, 2}
Com relação à função $ \,f:\,{\rm\,I\!R}\,\rightarrow\,{\rm\,I\!R}\, $ definida por $ \phantom{X}f(x)\,=\,1\,+\,sen\,3x\phantom{X} $ forneça:
a) o conjunto imagem b) o período
resposta: a)
O valor do seno varia entre -1 e 1, inclusive. Então o seno de 3x também varia entre -1 e 1. $\phantom{X}\;-1\;\leqslant\;sen\;3x\;\leqslant\;1\phantom{X}\;$ Vamos somar 1 a cada membro da expressão acima: $\phantom{X}\;0\;\leqslant\;1\;+\;sen\;3x\;\leqslant\;2\phantom{X} $ $\phantom{X}\;0\;\leqslant\;f(x)\;\leqslant\;2\phantom{X} $ Como f(x) varia entre 0 e 2 (inclusive), o conjunto imagem é $\,Im\,=\,\lbrace\,x\,\in\,{\rm\,I\!R}\,|\,0\,\leqslant\,x\,\leqslant\,2\,\rbrace\,$ ou
Im = [0,2] b)
Um arco 3x executa uma volta completa no ciclo trigonométrico quando o valor de 3x varia entre 0 e 2π . $\phantom{X} 0\;\leqslant\;3x\;\leqslant\;2\pi\phantom{X}\Rightarrow$ $\phantom{X} 0\;\leqslant\;x\;\leqslant\;\dfrac{\;2\pi\;}{3}\phantom{X}$ Então um período da função inicia-se em 0 e termina em $\,\dfrac{\;2\pi\;}{3}\,$.
Determinar o conjunto domínio, o conjunto imagem e o período da função $\phantom{X}y\,=\,2\,+\,3\operatorname{cos}\left(2x\,+\,\dfrac{\,\pi\,}{\,3\,}\,\right)\phantom{X}$.