Lista de exercícios do ensino médio para impressão
(PUC-RS - 1980) Se "$\;\ell\;$" é a medida da aresta de um tetraedro regular, então sua altura mede:
a)
$\;\dfrac{\ell\sqrt{2}}{3}$
c)
$\;\dfrac{\ell\sqrt{3}}{4}$
b)
$\;\dfrac{\ell\sqrt{3}}{2}$
d)
$\;\dfrac{\ell\sqrt{6}}{3}$
e)
$\;\dfrac{\ell\sqrt{6}}{9}$

 



resposta:
Resolução:

altura do tetraedro regular:

altura do tetraedro regular
Na figura, o segmento $\;\overline{MC}\;$ ou apótema "g" na face inferior do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$:
$\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$
O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo.
A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então:
$\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$
$\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$
Assim temos:
$\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$
Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
resposta:
Alternativa D
×
(CESESP - 1985) Considere a figura abaixo, onde G é o baricentro do triângulo ABC.

triângulo com baricentro
Assinale a única alternativa que corresponde à razão entre as áreas dos triângulos ABG e EGD.
a)
1
b)
2
c)
3
d)
4
e)
12

 



resposta: Alternativa D
×
(USP) A altura de um tetraedro regular de aresta $\phantom{X}\ell\phantom{X}$ vale:
a)
$\,\dfrac{\,\ell\,\sqrt{\,6\,}\,}{\,3\,}\,$
b)
$\,\dfrac{\,\ell\,\sqrt{\,3\,}\,}{\,2\,}\,$
c)
$\,\ell\,\sqrt{\,3\,}\phantom{X}$
d)
$\,\ell\,\phantom{\dfrac{X}{X}}$
e)
$\,\ell\,\sqrt{\,2\,}\,$

 



resposta:

altura do tetraedro regular:

altura do tetraedro regular
Na figura, o apótema "g" do tetraedro regular é a altura de um triângulo equilátero de lado $\,\ell\,$:
$\phantom{X}g\,=\,\dfrac{\,\ell\sqrt{\,3\,}\,}{2}\phantom{X}$
O ponto O é o centro do triângulo equilátero, então é também o baricentro do mesmo.
A distância do baricentro até o vértice do triângulo é igual ao dobro da sua distância até o lado oposto a esse vértice, então:
$\phantom{X}MO\,=\,\dfrac{\,1\,}{3}\,g\phantom{X}$
$\phantom{X}OC\;=\;\dfrac{\;2\;}{3}\;g\phantom{X}$
Assim temos:
$\phantom{X}g^2\,=\,H^2\,+\,(\dfrac{\,1\,}{3}\,g)^2\;\Longleftrightarrow \,$ $\phantom{X}g^2\,-\,\dfrac{\,1\,}{9}g^2\,=\,H^2\;\Longleftrightarrow \,$ $\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}g^2\phantom{X}$
Sabemos que $\,g\,=\,\dfrac{\ell\sqrt{3}}{2}\,$, vem que:$\phantom{X}H^2\,=\,\dfrac{\,8\,}{9}(\dfrac{\ell\sqrt{3}}{2})^2\;\Leftrightarrow\,H\,=\,\dfrac{\,\ell\,\sqrt{\,6\,}}{3}\phantom{X}$
resposta:
alternativa A
×
Veja exercÍcio sobre:
geometria de posição
geometria espacial
pirâmide