(CESCEM - 1977) Um subconjunto $\,\mathbb{X}\,$ de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares. O número de elementos de $\,\mathbb{X}\,$ é:
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,2)\;$, $\;B=(2,-2)\;$ e $\;C=(4,3)\;$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\;\overline{BC}\;$ é:
(CESCEA - 1968) Dado o segmento $\;\overline{AB}\;$ de extremidades $\;A \equiv (-4,1)\;$ e $\;B \equiv (5,7)\;$ as coordenadas do ponto $\;C\;$ que divide na razão $\;\dfrac{\overline{AC}}{\overline{CB}} = 4\;$ são:
(CESCEA - 1968) Sejam A, B e C números reais quaisquer. Dada a equação $\;Ax + By + C = 0\,$, assinale dentre as afirmações abaixo a correta:
a) se $A \ne 0$ e $B \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem b) se $B \ne 0$ e $C=0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem, não paralela a nenhum dos eixos c) Se $A = 0$ e $C \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta paralela ao eixo $0x$ d) se $A \ne 0$, $B = 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$ e) se $A = 0$, $B \ne 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$
(CESCEA - 1972) A equação da reta que passa pelo ponto $\;A\,\equiv \,(2,\,5)\;$ e que corta a reta de equação $\;y\,=\,-x\,+\,1\;$ num ponto $\;B\;$, tal que $\;AB\,=\,3\sqrt{2}\;$, é:
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,\,2)\,$, $\;B=(2,\,-2)\,$ e $\;C=(4,\,3)\,$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\,\overline{BC}\,$ é:
Em "Aeromoça na burocracia me dá idéia de um pé de gerânio intimado a viver e florir dentro de um armário fechado", as expressões de um pé e de gerânio são respectivamente:
a) adjunto adnominal, complemento nominal b) complemento nominal, adjunto adnominal c) complemento nominal, complemento nominal d) objeto indireto, complemento nominal e) adjunto adnominal, adjunto nominal
a) se existir um(a) e um(a) só b) se existirem exatamente dois (duas) distintos(as) c) se existir um número finito porém maior que 2 d) se existirem infinitos(as) e) se não existir nenhum(a) de modo que as afirmações que se seguem fiquem corretas:
1º reta perpendicular a duas retas reversas. 2º plano paralelo a duas retas reversas. 3º dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra. 4º retas $\overleftrightarrow{AB}$ e $\overleftrightarrow{CD}$ reversas, plano por $\overleftrightarrow{CD}$ e equidistante dos pontos $A$ e $B$.
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p . Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .