Lista de exercícios do ensino médio para impressão
(CESCEM - 1977) Um subconjunto $\,\mathbb{X}\,$ de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares. O número de elementos de $\,\mathbb{X}\,$ é:

a) 32
b) 27
c) 24
d) 22
e) 20


 



resposta: (D)
×
Calcular a distância entre os pontos A ( 1 ; 3 ) e B ( -1 ; 4 ) .

 



resposta:
×
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,2)\;$, $\;B=(2,-2)\;$ e $\;C=(4,3)\;$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\;\overline{BC}\;$ é:
a)
$3x + 4y = 11$
b)
$4x + \dfrac{7}{2}y = 11$
c)
$x + 3y = 7$
d)
$3x + 2y = 7$
e)
$x + 2y = 5$

 



resposta: Alternativa A
×
(FUVEST - 1977) O gráfico que melhor se adapta ao lugar geométrico de equação $\;{(|x|\,-\,1)}^2\,+\,{(|y|\,-\,1)}^2\,=\,1\;$ é:
a)
circunferência no quadrante I e III
b)
circunferência no quadrante I, II, III e IV
c)
circunferência no quadrante I
d)
2 circunferências excêntricas nos quadrantes I e III
e)
4 circunferências excêntricas nos quadrantes I, II, III e IV

 



resposta: (D)
×
(EPUSP - 1966) Os pontos do plano $\;xy\;$ cujas coordenadas satisfazem à equação $\;sen(x-y) = 0\;$ constituem:
a)
uma reta
b)
um senóide
c)
uma elipse
d)
um feixe de retas paralelas
e)
nenhuma das anteriores

 



resposta: Alternativa D
×
(MACKENZIE - 1973) A representação gráfica do conjunto de pontos $\;(x\,,\,y)\;$ tais que $\;x\,-\,2\,-\,\sqrt{4\,-\,y^2}\,\geqslant\,0\;$ é:
a)
gráfico cartesiano sol nascente
b)
gráfico cartesiano meia circunferência
c)
gráfico cartesiano um quarto de circunferência
d)
gráfico cartesiano circunferência de raio 4
e)
quarto de circunferência no plano cartesiano

 



resposta: (B)
×
Localizar e rotular no plano cartesiano os pontos A (0 , -3) , B (3 , -4) , C (5 , 6) , D (-2 , -5) e E (-3 , 5) .
plano cartesiano quadriculado

 



resposta: resposta plano cartesiano com pontos
×
(CESCEA - 1968) Dado o segmento $\;\overline{AB}\;$ de extremidades $\;A \equiv (-4,1)\;$ e $\;B \equiv (5,7)\;$ as coordenadas do ponto $\;C\;$ que divide na razão $\;\dfrac{\overline{AC}}{\overline{CB}} = 4\;$ são:
a)
$\;(-\dfrac{11}{5},\dfrac{12}{5})\;$
b)
$\;(\dfrac{16}{5},\dfrac{29}{5})\;$
c)
$\;(1,8)\;$
d)
$\;(\dfrac{1}{2},4)\;$
e)
$\;(9,6)\;$

 



resposta: Alternativa B
×
(EPUSP - 1966) Seja C o ponto de encontro das medianas do triângulo OAB de ângulo reto A . Sendo O = (0 , 0) e A = (3 , 0) , a abscissa de C :
a)
é inferior a 1
b)
é 1
c)
é 1,5
d)
só pode ser conhecida se for dada a ordenada de B
e)
nenhuma das respostas anteriores

 



resposta: alternativa E
×
(CESCEA - 1968) Sejam A, B e C números reais quaisquer. Dada a equação $\;Ax + By + C = 0\,$, assinale dentre as afirmações abaixo a correta:

a) se $A \ne 0$ e $B \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem
b) se $B \ne 0$ e $C=0$ então $Ax + By + C = 0$ é a equação de uma reta pela origem, não paralela a nenhum dos eixos
c) Se $A = 0$ e $C \ne 0$ então $Ax + By + C = 0$ é a equação de uma reta paralela ao eixo $0x$
d) se $A \ne 0$, $B = 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$
e) se $A = 0$, $B \ne 0$ e $C = 0$ então $Ax + By + C = 0$ é a equação do eixo $0y$


 



resposta: alternativa D
×
(FEI - 1967) Para cada número real $\;m\;$, considere-se a reta $\;r(m)\;$ de equação $\;mx + y - 2 = 0\;$.
a)
existem $\;m_1\;$ e $\;m_2\;$, com $\;m_1 \ne m_2\;$, tais que $\;r(m_1)\;$ e $\;r(m_2)\;$ são paralelas
b)
existe um valor de $\;m\;$ para o qual a reta $\;r(m)\;$ é paralela ao eixo dos $\;y\;$
c)
qualquer que seja $\;m\;$, a reta $\;r(m)\;$ passa pelo ponto $\;(2,-1)\;$
d)
qualquer que seja $\;m\;$, a reta $\;r(m)\;$ passa pelo ponto $\;(0,2)\;$
e)
nenhuma das afirmações é verdadeira

 



resposta: alternativa D
×
(CESCEA - 1973) A reta que passa pelo ponto $P = (2,3)$ e pelo ponto $Q$, simétrico de $P$ em relação à origem, é:
a)
$2y = 3x$
b)
$y = 3x - 3$
d)
$y = 4x - 1$
c)
$y = 2x - 1$
e)
nenhuma das anteriores

 



resposta: Alternativa A
×
(CESCEA - 1972) A equação da reta que passa pelo ponto $\;A\,\equiv \,(2,\,5)\;$ e que corta a reta de equação $\;y\,=\,-x\,+\,1\;$ num ponto $\;B\;$, tal que $\;AB\,=\,3\sqrt{2}\;$, é:
a)
$y = x + 3$
b)
$y - 5 = -(x-2)$
c)
$y - 5 = (3x - 2)$
d)
$y = 2x + 1$
e)
nenhuma das anteriores

 



resposta: (A)
×
(FGV - 1976) Dados, num sistema de coordenadas cartesianas, os pontos $\;A=(1,\,2)\,$, $\;B=(2,\,-2)\,$ e $\;C=(4,\,3)\,$, a equação da reta que passa por $\;A\;$ pelo ponto médio do segmento $\,\overline{BC}\,$ é:
a)
$3x + 4y = 11$
b)
$4x + \dfrac{7}{2}y = 11$
d)
$3x + 2y = 7$
c)
$x + 3y = 7$
e)
$x + 2y = 5$

 



resposta: alternativa A
×
(MACKENZIE - 1977) O gráfico abaixo pode ser da função:
gráfico de um menos seno de x

a)
$|senx|$
b)
$sen^2x$
c)
$1-|senx|$
d)
$1-|cosx|$
e)
não sei.


 



resposta: Alternativa C
×
Em "Aeromoça na burocracia me dá idéia de um pé de gerânio intimado a viver e florir dentro de um armário fechado", as expressões de um pé e de gerânio são respectivamente:

a) adjunto adnominal, complemento nominal
b) complemento nominal, adjunto adnominal
c) complemento nominal, complemento nominal
d) objeto indireto, complemento nominal
e) adjunto adnominal, adjunto nominal


 



resposta: Alternativa B
×
(ITA - 1970) Quando a projeção de um ângulo $\;\theta\;$ sobre um plano paralelo a um de seus lados é um ângulo reto, podemos afirmar que:
a)
$90^{o}\,<\,\theta\,<\,180^{o}$
b)
$\theta\,<\,90^{o}$
c)
$\theta \, = \, 90^{o}$
d)
$\theta \, = \, 2\pi \, Rad$
e)
nenhuma das respostas anteriores

 



resposta: Alternativa C
×
(CESCEM - 70) Do enunciado abaixo:

"A condição necessária e suficiente para que uma reta seja paralela a um plano que não a contém é que ela seja paralela a uma reta desse plano."

Podemos concluir que:
a)
A condição ser suficiente significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos.
b)
A condição ser necessária significa que: toda reta paralela a uma reta de um plano é paralela a este plano.
c)
A condição ser suficiente significa que: todo plano paralelo a uma reta conterá todas as retas paralelas à reta dada.
d)
A condição ser necessária significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos.
e)
Nenhuma das anteriores.

 



resposta: Alternativa E
×
(MACKENZIE - 1973) Marque uma das alternativas:

a) se existir um(a) e um(a) só
b) se existirem exatamente dois (duas) distintos(as)
c) se existir um número finito porém maior que 2
d) se existirem infinitos(as)
e) se não existir nenhum(a)
de modo que as afirmações que se seguem fiquem corretas:

reta perpendicular a duas retas reversas.
plano paralelo a duas retas reversas.
dadas duas retas reversas e não ortogonais, plano contendo uma das retas e perpendicular à outra.
retas $\overleftrightarrow{AB}$ e $\overleftrightarrow{CD}$ reversas, plano por $\overleftrightarrow{CD}$ e equidistante dos pontos $A$ e $B$.

 



resposta: 1a - 2d - 3e - 4b
×
(ITA - 1977) Seja p um plano. Sejam A , B , C e D pontos de p e M um ponto qualquer não pertencente a p .
Então:
a)
se C dividir o segmento $\;\;\overline{AB}\;\;$ em partes iguais a $\;\; \overline{MA}\,=\,\overline{MB}\;\;$, então o segmento $\;\;\overline{MC}\;\;$ é perpendicular a p
b)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
c)
se ABC for um triângulo equilátero e D for equidistante de A , B e C , então $\;\;\overline{MA}\,=\,\overline{MB}\,=\,\overline{MC}\;\;$ implica que o segmento $\;\;\overline{MD}\;\;$ é perpendicular a p .
d)
se ABC for um triângulo equilátero e o segmento $\;\;\overline{MD}\;\;$ for perpendicular a p , então D é equidistante de A , B e C .
e)
nenhuma das respostas anteriores.

 



resposta: alternativa C
×
Veja exercÍcio sobre: teoria dos conjuntos