Lista de exercícios do ensino médio para impressão
(FUVEST - 2018) Prolongando-se os lados de um octógono convexo $\,ABCDEFGH\,$, obtém-se um polígono estrelado, conforme a figura.
octógono com lados prolongados
A soma $\,\alpha_{\large 1}\,+\,...\,+\,\alpha_{\large 8}\,$ vale
a)
180°
b)
360°
c)
540°
d)
720°
e)
900°

 



resposta: (B)
×
(MAPOFEI) O perímetro de um triângulo é 100 m. A bissetriz do ângulo interno A divide o lado oposto em dois segmentos de 16 m e 24 m . Determine os lados desse triângulo.

 



resposta:
Resolução:Teorema da Bissetriz

Construindo-se a bissetriz de um ângulo de um triângulo, determinam-se no lado oposto segmentos proporcionais aos lados desse triângulo.

triângulo ABC com bissetriz traçada
Na figura ao lado, um triângulo ABC de lados de medidas a, b e c, onde $\,\overleftrightarrow{AS}\,$ é a bissetriz do ângulo no vértice A.
Sabemos no enunciado que
1.
$\,m\,=\,16\,$ e $\,n\,=\,24\,$, então o lado c do triângulo mede $\,c\,=\,m\,+\,n\,=\,16\,+\,24\,=\,40\;\Rightarrow\;\boxed{\,c\,=\,40\,m\,}\,$
2.
O perímetro do triângulo é 100 m, então a soma $\,a\,+\,b\,+\,c\,=\,100\;\Rightarrow\;a\,+\,b\,+\,40\,=\,100\,$ $\Rightarrow\,a\,+\,b\,=\,60\,$(I)

Se os lados são proporcionais aos segmentos gerados pela bissetriz (TEOREMA DA BISSETRIZ) então temos conforme a figura: $\,\dfrac{a}{b} \,=\,\dfrac{m}{n}\,$ $\Rightarrow\,\dfrac{a}{b} \,=\,\dfrac{16}{24}\,$(II)(I) e (II)$\,\longrightarrow\,\left\{\begin{array}{rcr} \,a\,+\,b\,=\,60\,& \\ \dfrac{a}{b} \,=\,\dfrac{16}{24}\phantom{X}& \\ \end{array} \right.\,$ $\Rightarrow\,a\,=\,\dfrac{2b}{3}\phantom{X}\Rightarrow\;\dfrac{2b}{3}\,+\,b\,=\,60 $
$\,\Rightarrow\;5b\,=\,180\;\Rightarrow\;\boxed{\,b\,=\,36\,m\,}\;a\,=\,\dfrac{2b}{3}\;\Rightarrow\,\boxed{\,a\,=\,24\,m\,}$
Resposta:
Os lados do triângulo são 24m, 36m e 40m
×
(ITA) Os lados de um triângulo medem a , b e c (centímetros). Qual o valor do ângulo interno deste triângulo, oposto ao lado que mede a centímetros, se forem satisfeitas as relações: 3a = 7c e 3b = 8c.
a)
30°
b)
60°
c)
45°
d)
120°
e)
135°

 



resposta: Alternativa B

LEI DOS COSSENOS:
"Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".

Resolução:
triângulo ABC cujos lados são os segmentos a, b e c
Na figura, um triângulo genérico $\,\triangle ABC\,$ onde deseja-se a medida do ângulo $\,\hat{A}\,$.
De acordo com a lei dos cossenos temos:
$\;a^2\,=\,b^2\,+\,c^2\,-\,2bc\centerdot (cos\hat{A})\;(I)$
Mas (conforme o enunciado), $\,a\,=\,\dfrac{7c}{3}\,$ e $\,b\,=\,\dfrac{8c}{3}\,$, substituindo em (I)
$\,\left( \dfrac{7c}{3}\right)^{\large 2}\;=\;\left( \dfrac{8c}{3} \right)^{\large 2}\,+\,c^{\large 2}\, -\,2\centerdot \left( \dfrac{8c}{3} \right)\centerdot c \centerdot cos\hat{A}\;\Rightarrow\,$
$\,\Rightarrow\,\left( \dfrac{49c^{\large 2}}{9}\right)\;=\;\left( \dfrac{64c^{\large 2}}{9} \right)^\,+\,\dfrac{9c^{\large 2}}{9}\, -\,2\centerdot \left( \dfrac{24c^{\large 2}}{9} \right)\centerdot cos\hat{A}\,\Rightarrow\,$
$\,\Rightarrow\,49\left( \dfrac{c^{\large 2}}{9}\right)\;=\;64\left( \dfrac{c^{\large 2}}{9} \right)\,+\,9\left(\dfrac{c^{\large 2}}{9}\right)\, -\,2\centerdot 24 \centerdot cos\hat{A}\left( \dfrac{c^{\large 2}}{9} \right)\,$
● dividir a igualdade por c2/9
$\,\Rightarrow\,49\;=\;64\,+\,9\, -\,2\centerdot 24 \centerdot cos\hat{A}\,$
$\,\Rightarrow\,-cos\hat{A}\,=\,\dfrac{49\,-\,64\,-\,9}{2\centerdot 24}\,\Rightarrow\,$
$\,\Rightarrow\,cos\hat{A}\,=\,\dfrac{24}{48}\,\Rightarrow\,cos\hat{A}\,=\,\dfrac{1}{2}\;\Rightarrow\; \hat{A}\,=\,60^o$
Resposta:
medida do ângulo oposto ao lado que mede a centímetros é 60° — alternativa B

×
A soma dos ângulos internos de um polígono é 2340°. Calcular a quantidade de diagonais desse polígono.

 



resposta:

A soma dos ângulos internos de um polígono é 180° × (n - 2)


Resolução:
Vamos calcular a quantidade de lados no polígono:
SI = 180°(n - 2) = 2340°n - 2 = 13n = 15
Agora vamos substituir o número de lados (n = 15) na fórmula do número de diagonais:
$\phantom{X}d_n\,=\,\dfrac{\;n(n\,-\,3)\;}{2}\phantom{X}$ e então temos que:
$\phantom{X}d_{\text 15\,lados}\,=\,\dfrac{\;15(15\,-\,3)\;}{2}\;\Leftrightarrow\;d_{\text 15\,lados}\,=\,90\phantom{X}$
90 diagonais
×
O valor de um ângulo interno de um polígono regular é 150° . Qual é o polígono?

 



resposta:

Polígono regular possui todos os lados de mesma medida e todos os ângulos de mesma medida.

Resolução:
$\,\left\{\begin{array}{rcr} A_i\;\leftarrow & \\ S_i \; \leftarrow & \\ n \;\leftarrow & \end{array} \right.\,$
medida do ângulo interno
soma das medidas dos ângulos internos
número de lados
Sabemos que soma dos ângulos internos de um polígono é $\boxed{\phantom{X}S_i\;=\;180^o(n\,-\,2)\phantom{X}}$

$\;A_i\,=\,\dfrac{\;S_i\;}{\;n\;}\;=\dfrac{\;180^o(n\,-\,2)\;}{n}\;=\;150^o\;\Longleftrightarrow$ $\;180^o\,\centerdot\,n\,-\,360^o\;=\;150^o\,\centerdot\,n\;\Longrightarrow$ $\;n\,=\,12\;$

O polígono é o Dodecágono (n = 12 lados)
×
Qual é o polígono regular cujo ângulo interno (ai) mede entre 130° e 140° ?

 



resposta:
Resolução:
A condição descrita no enunciado é 130° < ai < 140°
Sabemos que $\,a_i\,=\,\dfrac{\,180(n\,-\,2)\,}{n}\;$graus, e então temos que:

$\,130^o\,\lt\,\dfrac{\,180(n\,-\,2)\,}{n}\,\lt\,140^o\,$ que podemos então resolver como um sistema de inequações:

$\,\left\{\begin{array}{rcr} 130^o \lt \,\dfrac{\,180(n\,-\,2)\,}{n}\;&(I) \\ \dfrac{\,180(n\,-\,2)\,}{n}\,\lt\,140^o\;&(II) \end{array} \right.\,$

Resolvento (I)
$\,130^o\,\lt\,\,\dfrac{\,180(n\,-\,2)\,}{n}\;\Longleftrightarrow$ $\;130n\,\lt\,180(n\,-\,2)\;\Longleftrightarrow$ $\;\boxed{\;n\,\gt\,7,2\;}\;(*)$

Resolvento (II)
$\,\dfrac{\,180(n\,-\,2)\,}{n}\lt\,140^o\;\Longleftrightarrow$ $\;180(n\,-\,2)\,\lt\,140n\;\Longleftrightarrow$ $\;\boxed{\;n\,\lt\,9\;}\;(**)$

(*) e (**) Temos então que 7,2 < n < 9 e como n ∈ ℕ concluímos que n = 8
o polígono é o octógono regular (n = 8)
×
Quantas diagonais tem o polígono regular cujo ângulo interno é o triplo do ângulo externo?

 



resposta:
Resolução:
ai é o ângulo interno;
ae é o ângulo externo;
$\,\left\{\begin{array}{rcr} a_i\,+\,a_e\,=\,180^o\;& \\ a_i\,=\,3\,a_e\phantom{XXX}\;& \end{array} \right.\phantom{X}\Longrightarrow\;a_e\,=\,45^o$
Quando um polígono é regular o ângulo externo é igual a $\,\dfrac{\;360^o\;}{n}$.
$\,\dfrac{\;360^o\;}{n}\;=\;45^o\;\Longrightarrow\;n\,=\,8\,$
Calculando o número de diagonais de um polígono de oito lados:
$\,d_n\,=\,\dfrac{\;n(n\,-\,3)\;}{2}\;\Rightarrow\,$ $\;d_n = \dfrac{\;8(8-3)\;}{2}\;=\;20\;$
o polígono tem 20 diagonais.
×
Veja exercÍcio sobre:
soma dos ângulos internos do polígono de n lados
polígonos
ângulo interno