Construindo-se a bissetriz de um ângulo de um triângulo, determinam-se no lado oposto segmentos proporcionais aos lados desse triângulo.
LEI DOS COSSENOS:
"Em todo triângulo, o quadrado da medida de um dos lados é igual à soma dos quadrados das medidas dos outros lados menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam".
$\;A_i\,=\,\dfrac{\;S_i\;}{\;n\;}\;=\dfrac{\;180^o(n\,-\,2)\;}{n}\;=\;150^o\;\Longleftrightarrow$ $\;180^o\,\centerdot\,n\,-\,360^o\;=\;150^o\,\centerdot\,n\;\Longrightarrow$ $\;n\,=\,12\;$
$\,130^o\,\lt\,\dfrac{\,180(n\,-\,2)\,}{n}\,\lt\,140^o\,$ que podemos então resolver como um sistema de inequações:
$\,\left\{\begin{array}{rcr} 130^o \lt \,\dfrac{\,180(n\,-\,2)\,}{n}\;&(I) \\ \dfrac{\,180(n\,-\,2)\,}{n}\,\lt\,140^o\;&(II) \end{array} \right.\,$Resolvento (I)
$\,130^o\,\lt\,\,\dfrac{\,180(n\,-\,2)\,}{n}\;\Longleftrightarrow$ $\;130n\,\lt\,180(n\,-\,2)\;\Longleftrightarrow$ $\;\boxed{\;n\,\gt\,7,2\;}\;(*)$
Resolvento (II)
$\,\dfrac{\,180(n\,-\,2)\,}{n}\lt\,140^o\;\Longleftrightarrow$ $\;180(n\,-\,2)\,\lt\,140n\;\Longleftrightarrow$ $\;\boxed{\;n\,\lt\,9\;}\;(**)$