(USP) Na figura, temos a representação de um retângulo inscrito num setor de $\;90^o\;$ e de raio $6m$. Medindo o lado OA do retângulo $\;\frac{2}{3}\;$ do raio, o produto $OA\;\times\;AB\;$ é:
(ITA - 1977) Considere um triângulo retângulo inscrito em uma circunferência de raio $\,R\,$ tal que a projeção de um dos catetos sobre a hipotenusa vale $\, \dfrac{R}{m}\phantom{X} (m \geqslant 1)\,$. Considere a esfera gerada pela rotação desta circunferência em torno de um de seus diâmetros. O volume da parte desta esfera, que não pertence ao sólido gerado pela rotação do triângulo em torno da hipotenusa, é dado por:
(FUVEST) Em um triângulo $\,ABC\,$ o lado $\,AB\,$ mede $\,4\sqrt{2}\,$ e o ângulo $\,\hat{C}\,$, oposto ao lado $\,AB\,$, mede $\,45^o\,$. Determine o raio da circunferência que circunscreve o triângulo.
resposta:
Resolução:
Na figura, $\,\triangle ABC\,$ onde o ângulo $\,\hat{C}\,$ mede 45° e o lado $\,\overline{AB}\,$ mede $\,4\sqrt{2}\,$ unidades. O triângulo está inscrito na circunferência de centro $\,O\,$.
Se $\,A\hat{C}B\,$ é um ângulo inscrito, então o ângulo $\,A\hat{O}B\,$ é o ângulo central correspondente e mede o dobro de $\,A\hat{C}B\,$, ou seja, mede $\,2\,\centerdot\,45^o\,=\,90^o\;$ $\,\longrightarrow \,$ o triângulo $\,A\hat{O}B\,$ é reto em $\,\hat{O}\,$
O triângulo $\,AOB\,$ é isósceles com dois lados iguais ao raio $\;r\;$ da circunferência e o terceiro lado igual a $\;4\sqrt{2}\,$.
Aplicando-se o Teorema de Pitágoras no triângulo retângulo isósceles $\,AOB\,$ temos:
Outro método: Da trigonometria, sabemos que o seno de 45° é $\,\dfrac{\sqrt{\,2\,}}{\,2\,}$ podemos utilizar o Teorema dos Senos: $\, \dfrac{med(AB)}{sen\,45^o}\,=\,2\, \centerdot \, Raio\;\Rightarrow\;\dfrac{\;4\sqrt{\,2\,}\;}{\dfrac{\sqrt{\,2\,}}{2}} \,=\,2R\,\Rightarrow$ $\,2R\,=\,8\;\Rightarrow\;R\,=\,4\,$
(PUC) O pentágono ABCDE da figura seguinte está inscrito em um círculo de centro $\,O\,$. O ângulo $\,C\hat{O}D\,$ mede 60°. Então $\,x\,+\,y\,$ é igual a:
(FGV) As cordas $\,\overline{AB}\,$ e $\,\overline{CD}\,$ de uma circunferência de centro $\,O\,$ são, respectivamente, lados de polígonos regulares de 6 e 10 lados inscritos nessa circunferência. Na mesma circunferência, as cordas $\,\overline{AD}\,$ e $\,\overline{BC}\,$ se intersectam no ponto $\,P\,$, conforme indica a figura a seguir:
A medida do ângulo $\,B\hat{P}D\,$, indicado na figura por $\,\alpha\,$, é igual a:
(FUVEST - 1980) A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos mede 20°. a) Qual a medida da mediana relativa à hipotenusa? b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?
resposta:
Resolução: a)
Seja $\,\triangle ABC\,$ o triângulo retângulo como na figura, com ângulo $\,\hat{C}\,$ de 20° e hipotenusa 20 cm. Consideremos a circunferência de centro $\,M\,$ circunscrita ao $\,\triangle ABC\,$.O ângulo $\,B\hat{A}C\,$ é reto e está inscrito na circunferência, portanto tem medida igual à metade do ângulo central correspondente $\,B\hat{M}C\,$. Portanto a medida de $\,B\hat{M}C\,$ é 180° (ângulo raso). Conclui-se que a hipotenusa do triângulo, o segmento $\,\overline{BC}\,$, é um diâmetro da circunferência de centro $\,M\,$, e que $\,M\,$ (centro) é ponto médio de $\,\overline{BC}\,$. Sendo $\,\overline{AM}\,$ um raio da circunferência, então a medida de $\,\overline{AM}\,$ é igual à metade da medida do diâmetro $\,\overline{BC}\,$. Se BC = 20 cm (hipotenusa - diâmetro) então AM = 10 cm (mediana - raio) b)
Como a $\,\overline{AM}\,$ e $\,\overline{MC}\,$ têm a mesma medida, então o $\,\triangle AMC\,$ é isósceles e portanto: $\,M\hat{A}C\,=\,M\hat{C}A\,=\,20^o\,$. Sendo $\,\overline{AS}\,$ bissetriz de $\,\hat{A}\,$ de medida 90°, então $\,C\hat{A}S\,=\,45^o\,$, donde concluímos que: $\,S\hat{A}M\,=\,S\hat{A}C\,-\,M\hat{A}C\;\Rightarrow\;S\hat{A}M\,=\,45^o\,-\,20^o\,=\,25^o$ resposta
a) A medida da mediana relativa à hipotenusa é 10 cm e b) a medida do ângulo formado entre a mediana e a bissetriz do ângulo reto é 25°
(CESGRANRIO - 1984) AB é o diâmetro do círculo de centro O no qual o triângulo ABC está inscrito. A razão $\,\dfrac{s}{S}\,$ entre as áreas $\,s\,$ do triângulo ACO e $\,S\,$ do triângulo COB é: