Lista de exercícios do ensino médio para impressão
Determine a equação da circunferência cujo centro coincide com a origem do sistema cartesiano e cujo raio mede 3 unidades.

 



resposta:
circunferência de raio 3 e centro 0-0 no plano cartesiano
Resolução:
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$\,(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\;$.
Como $\;C\,(0\,,\,0)\;$ e $\;R\,=\,3\;$, temos:
$\,(x\,-\,0)^2\,+\,(y\,-\,0)^2\,=\,3^2\;\Rightarrow$ $\; \;x^2\,+\,y^2\,-\,9\,=\,0\;$

$\phantom{X}\boxed{\;x^2\,+\,y^2\,-\,9\,=\,0\;} \phantom{X}$


×
Veja exercÍcio sobre:
geometria analítica
equação reduzida da circunferência
equação cartesiana da circunferência