$\,36\,\pi\;=\;\frac{\,4\,}{\,3\,}\pi\,R^3\;\Rightarrow\;R\,=\,3\,m\,$
$\,a^2\,=\,R^2\,+\,R^2\;\Rightarrow$ $\,a^2\,=\,9\,+\,9\;\Rightarrow$ $\,a\,=\,3\sqrt{\,2\,}\;m$
Aface = Atriângulo equilátero = $\,\dfrac{\ell^2\,\sqrt{3\,}}{4}\,=$ $\,\dfrac{\,(3\sqrt{2})^2\,\centerdot\,\sqrt{\,3\,}}{4}\,=\,\dfrac{\,9\,\sqrt{\,3\,}\,}{2}\,m^2$
$\,A_{\text TOTAL}\;=\;8\,\centerdot\,A_{\text face}\,=$ $\,\dfrac{\,8\,\centerdot\,9\,\sqrt{\,3\,}\,}{2}\, =\,36\sqrt{\,3\,}\;m^2$