a)
$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-\frac{3}{2}\,\lt\,x\,\lt\,-\frac{1}{2}\phantom{X}{\text ou}\phantom{X}0\,\lt\,x\,\lt\,\frac{1}{2}\rbrace\;$
b)
$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;1\,\leqslant\,x\,\leqslant\,\frac{3}{2}\phantom{X}{\text ou}\phantom{X}2\,\leqslant\,x\,\leqslant\,\frac{5}{2}\rbrace\;$
c)
$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-2\,\lt\,x\,\lt\,3\phantom{X}{\text e}\phantom{X}x\,\ne\,1\rbrace\;$
d)
$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;x\,=\,-3\phantom{X}{\text ou}\phantom{X}1\,\leqslant\,x\,\leqslant\,2\rbrace\;$
e)
$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;-1\,\lt\,x\,\lt\,1\phantom{X}{\text ou}\phantom{X}x\,\gt\,2\rbrace\;$
e)
$\,\mathbb{S}\,=\,\lbrace x\,\in\,{\rm I\!R}\;|\;x\,\leqslant\,3\rbrace\;$