"A condição necessária e suficiente para que uma reta seja paralela a um plano que não a contém é que ela seja paralela a uma reta desse plano."
Podemos concluir que:
a) A condição ser suficiente significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos. b) A condição ser necessária significa que: toda reta paralela a uma reta de um plano é paralela a este plano. c) A condição ser suficiente significa que: todo plano paralelo a uma reta conterá todas as retas paralelas à reta dada. d) A condição ser necessária significa que: todo plano paralelo a uma reta contém a paralela traçada a esta reta por um qualquer de seus pontos. e) Nenhuma das anteriores.
(E)
(PUC-SP - 1980) Se r e s são retas reversas, então pode-se garantir que:
a) todo plano que contém r também contém s . b) existe um plano que contém r e é perpendicular a s . c) existe um único plano que contém r e s . d) existe um plano que contém r e é paralelo a s . e) toda reta que encontra r encontra s .
(D)
(FUVEST - 1982) Sejam r e s duas retas distintas. Podemos afirmar que sempre:
a) existe uma reta perpendicular a r e a s . b) r e s determinam um único plano. c) existe um plano que contém s e não intercepta r. d) existe uma reta que é paralela a r e a s. e) existe um plano que contém r e um único ponto de s .
(A)
(STA CASA - 1982) Na figura ao lado, tem-se o triângulo tal que está contido num plano , e os ângulos de vértices e medem, respectivamente, 70° e 60°. Se // , , , contém a bissetriz do ângulo e , então a medida do ângulo , assinalado é:
a) 165°b) 155°c) 145°d) 130°e) 120°
(B)
(CESCEM - 1968) Uma urna contém 1 bola preta e 9 brancas. Uma segunda urna contém x bolas pretas e as restantes brancas num total de 10 bolas. Um primeiro experimento consiste em retirar, ao acaso, uma bola de cada urna. Num segundo experimento, as bolas das duas urnas são reunidas e destas, duas bolas são retiradas ao acaso. O valor mínimo de x a fim de que a probabilidade de saírem duas bolas pretas seja maior no segundo do que no primeiro experimento é:
a) 1 b) 2 c) 3 d) 4e) 9
(C)
Assinale a alternativa que não contém complemento nominal:
a) Agiu contrariamente ás minhas ordens. b) O regresso à Pàtria é um sonho intangível. c) O amor ao próximo deve sobrepor-se aos conflitos humanos. d) Ofereci uma caipirinha ao bêbado. e) Sua resposta ao examinador provocou palmas.
(D)
(ITA - 2004) Considere 12 pontos distintos dispostos no plano, 5 dos quais estão numa mesma reta. Qualquer outra reta do plano contém, no máximo, 2 destes pontos. Quantos triângulos podemos formar com os vértices nestes pontos?
a) 210 b) 315 c) 410 d) 415 e) 521
(A)
(ITA - 2004) Sejam os pontos , e .
a) Determine a equação da cirunferência , cujo centro está situado no primeiro quadrante, passa pelos pontos e e é tangente ao eixo . b) Determine as equações das retas tangentes à circunferência que passam pelo ponto .
Resolução:
a)
Seja o centro da circunferência no primeiro quadrante. Na figura, passa pelos pontos e , tangenciando o eixo . possui coordenadas (3,m) e é raio da circunferência, portanto mede 3.. O ponto , centro da circunferência , tem coordenadas , e a equação da circunferência é
b)
A equação do feixe de retas não verticais concorrentes em , e coeficiente angular : . A reta vertical que contém corta a circunferência em 2 pontos. A distância entre as tangentes e o centro é igual a 3, ou seja:
ou . As equações das tangentes são:
e
(UnB - 1982) Na figura abaixo, é dado um cubo de cm de aresta, cuja base está sobre um plano . O plano é paralelo à reta que contém a aresta . Forma com um ângulo de e "corta" do cubo um prisma de base triangular cuja base é o triângulo . O segmento tem 5 cm de comprimento. Determinar o volume do prisma .
V = 75 cm³
Um prisma triangular regular tem a aresta da base igual à altura. Calcular a área total do sólido, sabendo-se que a área lateral é 10 m².
Considerações:
Se o prisma triangular é "regular" significa que as bases são triângulos equiláteros e as arestas laterais são perpendiculares aos planos que contém as bases ( → não é um prisma oblíquo). aresta da base = altura do prismaárea da base, o triângulo equilátero Resolução:1. Sabemos que a área lateral é igual a A área lateral é a soma das áreas dos 3 retângulos que são as faces laterais do prisma (veja figura) . então 2. Área da base: (área do triângulo equilátero de lado em função da medida do lado do triângulo vale ) Então 3. Área total:
(CESCEM - 1977) Um subconjunto de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares. O número de elementos de é:
a) 32b) 27 c) 24d) 22 e) 20
(D)
Assinale a alínea que contém cacografia: a) finalizarlegalizarsintetizarrivalizar b) batizarruborizaralcoolizaramenizar c) aridezrapidezviuvezcamponez d) mudezcorpanzilaudazferoz e) pesquisaratrasadagrisalhobaronesa
(C)
(SANTA CASA) O triângulo ABC é tal que A é a origem do sistema de coordenadas, B e C estão no 1º quadrante e AB = BC . A reta s , que contém a altura do triângulo traçada por B , intercepta no ponto M . Sendo M (2 ; 1) e C (x ; y) , então x + y é igual a:
a) 3b) 5c) 6d) 7e) 9
(C)
(ITA - 1979) Um recipiente cilíndrico oco, sem a tampa superior, esteve exposto à chuva. Estime quantas gotas de chuva foram necessárias para encher a vigésima parte do volume total desse recipiente, sabendo-se que a área da base é m² e que a altura é m. Admita que as gotas são equivalentes às formadas na ponta de um conta-gotas comum. Tal estimativa é da ordem de
a) gotas. b) gotas. c) gotas. d) gotas. e) gotas.
Resolução:
O volume de água para preencher a vigésima parte do recipiente: m³
O volume de água em uma gota: Vamos aceitar que 1 cm³ (1 ml) contém entre 10 a 20 gotas. Volume da gota = cm³ Então: gotas, ou seja, a ordem de grandeza de é gotasResposta:
>alternativa B
(MAUÁ) No binômio , escreva o termo que contém , calculando o respectivo coeficiente.
O termo geral(***) do binômio é dado pela fórmula:
O termo contém então O expoente da expressão é 25, então . Vamos usar a fórmula(***) do termo geral dada acima:
(FUVEST - 2015) A equação , em que e são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta contém o centro da circunferência e a intersecta no ponto . Os valores de e são, respectivamente
a) -4 e 3 b) 4 e 5 c) -4 e 2 d) -2 e 4 e) 2 e 3
(A)
Uma urna contém bolas numeradas de 1 ate ; bolas são extraídas sucessivamente. Qual o número de sequências de resultados possíveis se a extração for: a) com reposição de cada bola após a extração, b) sem reposição de cada bola após a extração.
a) b)
Uma urna I contém 5 bolas numeradas de 1 a 5. Outra urna II contém 3 bolas numeradas de 1 a 3. Qual o número de sequências numéricas que podemos obter se extrairmos, sem reposição, 3 bolas da urna I e, em seguida, 2 bolas da urna II.
360 sequências.
Quantos números formados por 3 algarismos distintos escolhidos entre 2, 4, 6, 8, 9 contém o 2 e não contém o 6? (Lembrar que o 2 pode ocupar a 1ª, 2ª ou a 3ª posição).
18
Classifique as seguintes afirmativas como verdadeiras ou falsas:
a) ( )por um ponto passam infinitas retas. b) ( )por dois pontos distintos passa uma reta. c) ( )uma reta contém dois pontos distintos. d) ( )dois pontos distintos determinam uma e uma só reta. e) ( )Pos três pontos dados passa uma só reta.
a) V b) V c) V d) V e) F
Assinale as orações que contém voz passiva:
a) ()O livro é novo. b) ()Recebem-se donativos. c) ()Viajamos muito. d) ()A porta foi arrombada pelo ladrão. e) ()Fecharam o cofre com a chave.
a) ()O livro é novo. b) (X)Recebem-se donativos. c) ()Viajamos muito. d) (X)A porta foi arrombada pelo ladrão. e) ()Fecharam o cofre com a chave.